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In auctions where a seller can post a reserve price but if the object fails to sell
cannot commit never to attempt to resell it, revenue equivalence between repeated
first price and second price auctions without commitment results. When the time
between auctions goes to zero, seller expected revenues converge to those of a
static auction with no reserve price. With many bidders, the seller equilibrium
reserve price approaches the reserve price in an optimal static auction. An auction
in which the simple equilibrium reserve price policy of the seller mirrors a policy
commonly used by many auctioneers is computed. Journal of Economic Literature
Classification Numbers: C78, D44, D82. Q 1997 Academic Press

1. INTRODUCTION

Regular participants in the now defunct Christies’ auctions of fine wines
in Chicago often experienced deja vu. The same bottles of rare wine
seemed to appear auction after auction. Similar phenomena occur in
government auctions of lumber tracts, oil tracts, and real estate, although
with somewhat less mystery}by policy, properties that failed to sell at
earlier auctions were put up for bids at later auctions. Either implicitly or
by explicit policy, auctioneers were acknowledging the impossibility of
resisting the temptation to try to resell an object that failed to meet a
reserve price in an earlier auction.
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It has long been recognized in the bargaining literature that sequential
rationality imposes constraints on the behavior of agents. Although in
many environments, bargainers would like to impose take-it-or-leave-it
offers, they often cannot credibly commit never to attempt to renegotiate
in the event that no sale occurs. This inability often prevents a trader from
extracting much surplus from the transaction, a phenomenon called the
‘‘Coarse conjecture.’’ Solutions to dynamic bargaining games, therefore,
frequently impose, as an additional constraint, some form of sequential
rationality. This constraint has been ignored in the literature on optimal

Ž .auctions McAfee and McMillan, 1987, survey this extensive literature
which shows that in many circumstances, sellers maximize expected profits
by withholding the item from the market, even when it is common
knowledge that the buyer’s willingness to pay exceeds the seller’s value.

In this paper, we wed the literature on one-sided offer sequential
Žbargaining see for example, Gul, Sonnenschein, and Wilson, 1986, or

.Fudenberg, Levine, and Tirole, 1986 with that of optimal auctions to
characterize the dynamic path of reserve prices in auctions in which a
seller can commit not to sell only for an exogenously fixed period of time.
We show that if bidder types are independently and identically distributed
such that the value of the lowest possible bidder type exceeds the seller’s
use value, then in a game consisting of repeated second price auctions with
reserve prices, there is a unique perfect Bayesian equilibrium path of
reserve prices which decline deterministically over time. We also show that
there is an equilibrium in the repeated first price auctions with reserve
prices which generates the same reserve prices and expected revenue for
the seller as the sequentially optimal repeated second price auction. In
both cases, as the length of time which the seller can commit to keeping
the object off the market goes to zero, her revenue converges to her
expected revenue from an auction with no reserve price. In contrast to the
dynamic monopoly case, however, as the time between auctions shrinks to
zero, the initial reserve price remains bounded above the lowest possible
bidder valuation. As the number of bidders becomes large, the reserve
prices converge to the static optimal reserve price.

In a recent study of auction mechanisms by Bulow and Klemperer
Ž .1994 it is shown that an auctioneer may opt to seek more bidders and
impose no reserve price rather than attempt to impose an optimal reserve
price. Our results in Section 4 provide a complementary explanation. A
seller may just as well forgo any attempt to post reserve prices since the
gain in expected revenue is small. We begin the analysis with an illustrative
‘‘no gap’’ example in which an equilibrium path of an auction game has the
characteristic that reserve prices fall in fixed proportion}a feature of
sequential reserve price policies actually followed by some auctioneers.
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2. A LINEAR EXAMPLE

We begin with a parametrized example of an infinite horizon auction
game. Suppose a seller with one object for which her value is normalized
to zero faces n bidders each with valuations of the good which are drawn

w xindependently and identically from the Uniform 0, 1 distribution. The
seller wishes to sell the object via a second price auction with a reserve
price. It is well known that if the seller can commit to a reserve price, the
optimal reserve price in this environment is one-half for any number of
bidders. If the reserve is not met, however, the seller is now faced with the
temptation to reauction the good. Furthermore, if she is not able to resist
this temptation, then it is clear that in the first period, bidders with
valuations close to but above one-half, will not submit bids and will wait,
instead, for a chance at a later auction at a lower reserve price. In this
example, we will show that a stationary equilibrium exists which is charac-
terized by two simple constants, r and g . In any period, if the seller
believes that the support of the bidder types she is facing lies in the

w xinterval 0, ¨ , she will post a reserve price such that only bidders witht

valuations above g ¨ , submit bids above the reserve price. And, in any
period, a bidder with valuation ¨ will submit a bid above the reserve price

Žonly if the reserve price is r¨ or lower. Thus the equilibrium reserve price
.in any period is rg ¨ .t

This example differs somewhat from the general class we will analyze
later since the bottom of the support of the bidders is not bounded away

Ž .from the seller’s marginal cost. If there is only one bidder, n s 1 ,
Ž .Ausubel and Deneckere 1989 show that as well as the Coasian stationary

equilibria in which the initial seller price approaches zero as the discount
factor, d , approaches one, there also exist supergame-like equilibria in
which the seller is able to support high initial prices which decline slowly
over time. This price path is supported by a nonstationary equilibrium
involving a threat to revert to the low-profit Coasian price path. However,
with more than one bidder, such equilibria are less likely to be support-
able. The difference between the two cases arises because even if the
reserve price were to approach zero, seller profits do not go to zero. Thus
the threat which supports the Ausubel and Deneckere path is not as severe
when n G 2. Observe that the equilibrium we characterize here, as well as
the unique equilibrium we find in the general model, are both stationary.

To construct the stationary, linear equilibrium, suppose that whenever
w xthe seller believes the bidder types lie in the interval 0, ¨ , the seller’s bestt

response cutoff function is given by a constant fraction of ¨ , g . Assume,t
as well, that the function determining the maximal reserve price for which
a bidder of type submits a serious bid is also a constant fraction of his
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valuation; denote it by r. Because the auction is a second price auction, it
is straightforward to show that, if the bidder submits a bid, bidding his true
valuation is a best response.

Throughout the paper, we use the notation, X , to denote the random1
variable which is the highest of the n bidders’ valuations and Y to denote1
the random variable which is the highest of n y 1 bidders’ valuations. The
corresponding distribution and density functions of Y are1

F Y s F ny1 Y , dF Y s f Y s n y 1 F ny2 Y f Y .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Y 1 1 Y 1 Y 1 1 11 1 1

For any reserve price, R, if a bidder of type x G Rrr submits a bid and if
other bidders and the seller follow the assumed behavior, his expected
payoff is

x
xF x y RF Rrr y Y dF .Ž . Ž . HY Y 1 Y1 1 1

Rrr

That is, he will win only if all the other bidders have valuations below x,
will pay the reserve price if all other bidders’ valuations are below ¨ 9 such
that r¨ 9 - R, and otherwise will pay the second highest bid. If, on the
other hand, he waits but expects to bid in the next period, in the event of
no sale, he will obtain

Rrr
d xF Rrr y rg RrrF g Rrr y Y dF .Ž . Ž . HY Y 1 Y1 1 1ž /g Rrr

Since x G Rrr, if no sale occurs in the current period, he will win for sure
in the next period and pay either the second highest price of the other
bidders or the next period reserve price which by assumption will be rg Rrr
since given the equilibrium strategies, the seller believes only bidder with
valuations below Rrr would fail to submit bids in the current period.
Similar computations can be performed for x F Rrr. Notice that given
that the lowest type of bidder to submit a bid is strictly monotonic in the
reserve price and bids are strictly monotonic in bidder type, in equilibrium,
if x is the lowest type to submit a bid with reserve price R, then x will
only win if no other bidder submits a bid and therefore if he wins he must
win at exactly the reserve price. Thus, for a reserve price, R, the lowest
type bidder to bid is x such that rx s R. Combining the equations above
yields that r must satisfy

x
x y rx F x s d xF x y rg xF g x y Y dF . 1Ž . Ž . Ž . Ž . Ž .HY Y Y 1 Y1 1 1 1ž /g x

Using the uniform distribution, this implies

d 1 y g n

r s 1 y . 2Ž .nn 1 y dg
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The stationary character of the equilibrium implies that we should be able
to represent the expected payoff of a seller who is facing bidders with types

w x Ž .in the interval, 0, ¨ , as a time independent function of ¨ alone, P ¨ .t t t
Also, since for any reserve price, R, there is a unique lowest type bidder
who submits a bid, we can write the seller’s choice problem as if she were
choosing the lowest type, or cutoff type, rather than the reserve price, R.
In any given period, then, for any cutoff level, x, selected by the seller, her
payoff is

g ¨ , x s rxnF x F ¨ y F xŽ . Ž . Ž . Ž .t Y t1

¨ Xt 1q nY dF dX q d P x . 3Ž . Ž .H H 1 Y 11
x x

Ž . w xP ¨ must yield the maximized value of this expression for every n g 0, 1 .t t
Therefore, we can use the envelope theorem to get

x­ P xŽ .
s nrg xF g x q n Y dF .Ž . HY 1 Y1 1­ x g x

An optimal choice of cutoff level x given beliefs ¨ must satisfyt

­ g ¨ , xŽ .t ny1 ny1s 0 s ynrxx q n ¨ y x nrxŽ .t­ x

y n n y 1 ¨ y x x ny1Ž . Ž .t

xny1 ny1q d nrg x g x q n n y 1 Y dY .Ž . Ž .H 1 1ž /g x

Ž . Ž .Using 1 , and the assumption that g ¨ s g ¨ s x, then this implies gt t
and r must satisfy

g
r s 1 q 1 y d y 1 rn. 4Ž . Ž .ž /1 y g

Ž . Ž .Equations 4 and 2 together define the linear solution to the stationary
equilibrium. They combine to yield 2g y 1 s dg nq1. The graphs illus-
trated in Fig. 1 show how the reserve price, rg , and the cutoff value, g ,
vary with selected values of d and n.

Comments. These equations imply

Ž .i As d rises, g increases. The limit of these equations as d ap-
proaches zero approaches the static solution

1lim g s , lim r s 1.d ª 0 d ª 02

Simulations indicate that the reserve price, rg , decreases in d .
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Ž .ii As n rises, g falls and the limit as n approaches infinity also
approaches the static solution

1lim g s , lim r s 1.nª` nª`2

Ž . Ž nq1.iii As d approaches one, g is the solution of g 2 y g s 1. For
n s 1, the unique solution is g s 1, for n ) 1, the correct solution is less

Ž .than one. The cutoff reserve price constant r approaches n y 1 rn. For
n s 1, then, this implies that the initial price is arbitrarily close to zero.

ŽThis is the standard Coase like equilibrium price path. See, for example,
.Ausubel and Deneckere, 1989 . If n ) 1, since g - 1, the reserve price

begins strictly positive but must fall arbitrarily quickly as d approaches
one.1

Ž .iv Simulation of the equations indicates that g falls with n, and r
Žincreases with n, and the reserve price, rg increases with n as indicated

.in the last of the four graphs in Fig. 1 .

The U.S. Forest Service uses a reserve price policy of a form that very
closely matches that illustrated in the above example. If the tract fails to
sell at a current reserve price, the property is re-auctioned at a reserve
price that is 10% below the previous reserve.2 That is, the Forest Service
has adopted a policy that involves a linearly decreasing reserve price.
However, at a real interest rate of anywhere from 3% to 10%, and
assuming that the U.S. Forestry Service reauctions tracts every six months,
such a policy would be optimal only if the number of bidders is essentially
one. While this is evidently counterfactual, the policy could be interpreted
as a concern about collusive behavior by bidders, a possibility ruled out
exogenously in this analysis.

The closed form equilibrium strategies allows a more precise determina-
tion of the value of posting reserve prices with limited commitment.
Assuming an annual interest rate of 5%, if the auctioneer can commit to
keeping the object off the market for as long as a year each time it fails to
sell, his gain is at most 10% of the increment earned in the case of full
commitment. The 10% gain is computed with 2 bidders, and falls to 4% in
the case of 5 bidders. If the auctions are spaced only six months apart, the
corresponding increments are 5% and 3% of the extra revenues earned in
the auction with full commitment. These results reinforce the conclusions

Ž .of Bulow and Klemperer 1994 that the very small benefits from imposing
reserve prices may often be swamped by other considerations.

1 We are grateful to an associate editor who pointed out this feature.
2 We are grateful to Robert Marshall for drawing our attention to this fact.
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Ž . Ž . Ž .FIG. 1. a g for n s 2, 3, 5, 8; b reserve price for n s 2, 3, 5, 8; c g for d s 0.25, 0.50,
Ž .0.75, 0.99; d reserve price for d s 0.25, 0.50, 0.75, 0.99.

3. EQUILIBRIA IN TWO SEQUENTIALLY OPTIMAL
AUCTION GAMES

The example in Section 2 provides some suggestive comparative statics.
In this section, we provide a general characterization of equilibria in
sequentially optimal reserve price auction games for the case of both first
and second price auctions. As mentioned earlier, in this section we focus
on the case in which the bidder types valuations are bounded above the
valuation of the seller. This is primarily for tractability reasons. The
‘‘no-gap’’ case poses substantial difficulties as a general analysis. So far as
we know, little is known about the full equilibrium set even in the case
with n s 1. The reason is that in the case where the lowest possible bidder
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Ž .FIG. 1. continued

valuation is not bounded above the seller’s valuation, there is no finite
number T after which the game ends with probability one. The proofs of
the existence and uniqueness of equilibria in this section show how the
equilibria can be constructed by iterating from informationally ‘‘small’’

Žgames games with the support limited to the bidders with low types and
.which will always end immediately to larger games.

The seller of a single good for which she has zero use-value attempts to
sell it to a market of n potential buyers. Each buyer values the object in
monetary units, ¨ which is ex ante independently and identically dis-

Ž .tributed according to the distribution function, F ? . It is assumed that
Ž . Ž . w x 3F ? has a strictly positive density f ? on 1, ¨ , ¨ - `. The seller canH H

3 The assumption that the bottom of the support is one has no further substantial
consequence beyond the implication that we are in what is known as the ‘‘gap’’ case.
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commit in any given period to sell the good via a second price auction with
a reserve price or minimum accepted bid. A bid exceeding the reserve
price will be called a ‘‘serious bid.’’ The seller cannot commit to withhold-
ing the object from sale one period later if bids fail to meet the reserve
price in the current period. A sequential auction trading game thus
emerges consisting of a potentially infinite sequence of second price
auctions with reserve prices. In any period t s 0, 1, 2, . . . , if the seller
obtains the price, p , her payoff is given by d tp ; similarly, if a bidder witht t
valuation, ¨ obtains the object and pays p in period t, his payoff ist
Ž . Žd 9 ¨ y p ; otherwise he receives zero. All agents are risk neutral. For ant

analysis of repeated auctions with risk averse bidders, see McAfee and
.Vincent, 1993 . Incorporating both the demand for sequential rationality

and for sophisticated learning by the seller, the solution concept we focus
Ž . 4on is perfect Bayesian equilibrium pBe .

Often the phrase ‘‘beliefs ¨ ’’ will be used as shorthand for the state of at
game in which the seller believes that all remaining bidder valuations lie in
w .1, ¨ in period t. The skimming behavior this terminology implies ist
justified by the following lemma.

Ž .LEMMA 0. i In any pBe, if a bidder submits a bid abo¨e the posted
Ž .reser̈ e price, R , his unique weakly dominant strategy is to bid b ¨ s ¨ .t

Ž . Ž .ii Successï e skimming . In any pBe following any history h witht
posted reser̈ e price, R , for any bidder, if it is a best response to submit at
serious bid for a bidder with ¨aluation ¨ , then it is a strict best response for a
bidder with ¨aluation ¨ 9 ) ¨ to submit a serious bid.

Proof. Proofs are provided in the Appendix.

Remark. Second price auctions also possess asymmetric equilibria in
which one bidder bids very high and all others bid low. These equilibria
involve the use of weakly dominated strategies. In what follows, we restrict
attention to equilibria with the feature that if a serious bid is submitted, it

Ž .satisfies b ¨ s ¨ .

We begin by iteratively defining a sequence of optimization problems.
Ž .The idea similar to that of Fudenberg, Levine, and Tirole, 1986 is to

consider games which artificially must end after at most i periods with the
imposition of a reserve price of one.5 We show that there is a strictly

4 For a definition of perfect Bayesian equilibrium, see Freixas, Guesnerie and Tirole
Ž .1985 .

5 We restrict attention to reserve prices of at least one in order to include the case of a
single seller facing a single bidder}the one-sided offer bargaining situation. If there are two
or more bidders, since the lowest possible bidder type is assumed to be one, all serious bids
will be at least as high as one. Thus, any reserve price from zero to one would have the same
consequence. However, if n s 1, the price is solely determined by the price posted by the
seller. In this case, she would definitely prefer to set a reserve price no lower than one.



SEQUENTIALLY OPTIMAL 255

� 4increasing sequence of numbers, z , with the feature that for selleri
beliefs ¨ , ¨ F z , in all equilibria, the game will end in at most i periodst t i
and yield outcomes equivalent to the solution of the artificially constrained
optimization problem.

Fix

¨ XtU Ug ' g ' g ' 1, P ¨ ' nY f X dF dX , r ' 1.Ž . Ž .H H0 0 y1 0 1 1 Y 1 01
1 1

Define the sequences.6

iy1iy1 iy1 iy1 iy1U� 4 � 4 � 4 � 4g , g , r , P , g ,� 4j j j j jjs0 js0 js0 js0 js1

iteratively in the following manner.
Ž .The sequence of functions, r ¨ , w , denotes the highest reserve pricej

which would induce a bidder of type ¨ to submit a serious bid:

r x , w F x s 1 y d xF xŽ . Ž . Ž . Ž .j Y Y1 1

x
Uq d r w , g w F w q Y dF .Ž . Ž .Ž . Hjy1 jy2 Y 1 Y1 1ž /w

Ž .The definition corresponds to Eq. 1 given in the linear example where, in
Ž .that case, r ¨ , w s r¨ . The equation is derived from the comparison made

by a bidder who is just indifferent between bidding this period and bidding
in the next period. Since this is the lowest type of bidder who will bid, if he
wins in this period, it will only be at the reserve price. If he wins in the
following period, it may be at the next period reserve price or at a price
submitted by a serious bidder next period.

The second argument, w, requires some further explanation. By virtue of
Lemma 0, the strategy choice of the seller can be expressed in terms of a
selection of the lowest type of bidders who would submit bids in any period
instead of as a choice of reserve prices. In some histories of the game, it
may be the case that there exist more than one choice of a lowest type that
maximizes the seller’s expected profits in the next period. Along the
equilibrium path, it will be shown that the seller will always select the

Ž .highest of these possible optimizers see Lemma 3 in the Appendix .
However, to show this result we need a device that will illustrate how
bidders would behave if they anticipated a different selection by the seller
in the subsequent period. Therefore, whether a bidder of type x submits a

6 The optimization problem is stated in terms of choosing bidder types who submit serious
bids in a given period rather than choosing reserve prices. Since it will be shown that for each
reserve price there is a unique partition of bidder types who submit serious bids, this behavior
will correspond to equilibrium behavior.
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serious bid depends also on the marginal type, w, that is expected to be
indifferent between submitting a bid in the subsequent period and waiting
one period more. Observe that, assuming this function is increasing, the
lowest bidder type to win at the current reserve price trades off winning at
the reserve price this period against the probability weighted sum of the
next period reserve price and the second highest bid.

Ž .The next sequence of functions, g ¨ , x, w characterize the return to aj t
w xseller when the possible bidder types lie in the interval, 1, ¨ , the lowestt

bidder type who submits a bid this period is x and the lowest type to
submit a bid next period if the game continues would be w:

g ¨ , x , w s r x , w nF x F ¨ y F xŽ . Ž . Ž . Ž . Ž .j t j Y t1

¨ Xt 1q nY f X dF dX q d P x .Ž . Ž .H H 1 1 Y 1 jy11
x x

Ž .This expression is the analog to Eq. 3 in the linear example. The seller
Žmay obtain a sale in the current period, either at the reserve price with

ny1Ž .w Ž . Ž .x.probability nF x F ¨ y F x , or at the second highest valuation ift
there are two or more bidders. Otherwise, the seller learns that no bidder
had a value as great as x and she obtains a discounted continuation value,

Ž .P x .jy1
Ž .The functions, P ¨ , are the maximized values of the seller’s continua-j t

w xtion payoff in any period with beliefs 1, ¨ assuming the game must endt
after j periods and subject to what will be the sequential rationality

Ž .constraint on subsequent choices of bidder cutoffs selections from g .jy1

P ¨ s max g ¨ , x , w .Ž . Ž .j t x F ¨ , w gg Ž x . j tt jy1

Ž .Finally, the sequence of correspondences, g ¨ , are the set of maximiz-j t
ers from the same seller optimization problem and determine the seller’s
sequentially optimal cutoff bidder type when her beliefs are such that the

w xremaining types lie in the interval 1, ¨ . As mentioned above, in general gt j
U Ž .might be set-valued. The function g ¨ is constructed by choosing thej t

Ž .maximum from g ¨ for every ¨ .j t t

g ¨ s argmax g ¨ , x , w ¬ for some w g g x ,Ž . Ž . Ž .� 4j t x F ¨ j t jy1t

g U ¨ s sup g ¨ .Ž . Ž .� 4j t j t

Whenever g is single-valued, the two coincide. In general, g* is aj
complicated function of ¨ but it is analogous to g , from the lineart ¨
example.
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For any i, assume that this sequence is defined up to i y 1 and make
the following induction hypotheses for all j - i;

Ž .H1 P is increasing and continuous.j

Ž . Ž .H2 g x - x and g is compact-valued, increasing and upper hemi-j j
Ž U .continuous implying g is increasing and upper semi-continuous .j

Ž . Ž .H3 r x, w is strictly increasing in both of its arguments, continuousj
Ž .in x and upper semi-continuous in w and satisfies r x, w - x for w - xj

and, where defined

Ud r x , g x F xŽ . Ž .Ž .j jy1 Y1 G xf x . 5Ž . Ž .Y1dx

Ž .Observe that H1]H3 hold for i y 1 s 1.

Ž . Ž .LEMMA 1. If H1]H3 hold for i y 1, H1]H3 also hold for i.

Define

z s sup ¨ ¬ g U ¨ s 1� 4Ž .1 t 1 t

z s min sup ¨ ¬ g U ¨ F z , ¨ .� 4� 4Ž .i t i t iy1 H

The artificial optimization problem represented by the maximizers g i
determine the seller’s optimal choice of a cutoff bidder type this period
given that the game must end in at most i y 1 periods if no sale occurs
this period, that is, counting from the next period on. The terms, z , denotei

w xthe largest interval 1, ¨ of possible bidder types such that if the sellert
believed bidder types lay in this interval, she would be willing to end the
game in at most i y 1 periods counting from the current period}that is,
the constraint that the game end in at most i periods is not binding. The

w xnext lemma indicates that for some interval, 1, ¨ , ¨ ) 1, the seller wouldt t
Ž .prefer to post a trivial reserve price this period, R s 1 and gain a salet

for sure rather than wait until the next period and offer the trivial reserve
price. It also shows that as we define higher z ’s, eventually we must coveri
the whole possible interval of bidder types.

LEMMA 2. There exists an « ) 0 such that for all d and for all n,
z G 1 q « and there exists an T - `, such that z s ¨ .1 T H

Ž . Ž . Ž . Ž .Observe that for any ¨ - z , g ¨ s g ¨ , P ¨ s P ¨ andt i i t iyl t i t iy1 t
Ž U Ž .. Ž U Ž ..r x, g x s r x, g x for x F ¨ . Thus, by Lemma 2, we cani iy1 iy1 iy2 t

w xdefine some g , g*, P, and r independent of i over 1, ¨ . Fix a ¨ andH H
Ž . Ž .define ¨ so that ¨ g g ¨ , ¨ s g* ¨ , and R so that R st 1 H t ty1 t t

Ž Ž .. Ž .r ¨ , g* ¨ . Observe that, since g* ? is increasing, such a sequencetq1 tq1
is generically unique in ¨ . Theorem 1 shows that the solution to theH
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inductively defined optimization problem described above yields the unique
pBe path of the sequentially optimal second price auction game.

THEOREM 1. In the sequential second price auction game, in any perfect
Bayesian equilibrium, in any period t ) 1, if the belief is ¨ , the seller ’s bestt

Ž Ž .. Ž .response reser̈ e price is R s r ¨ , g* ¨ for ¨ g g ¨ . All bidderst tq1 tq1 tq1 t
Ž .with type x G g* ¨ submit bids equal to their own ¨alue. No other biddert

type submits a serious bid. In period t s 1, any reser̈ e price R s1
Ž Ž .. Ž .r ¨ , g* ¨ for ¨ g g ¨ is an equilibrium reser̈ e price offer. Along the2 2 2 H

equilibrium path, for t G 2, the unique equilibrium reser̈ e price is R st
Ž Ž . Ž Ž ...r g* ¨ , g* g* ¨ .t t

� 4COROLLARY 1. For any seller belief, ¨ , let ¨ , i s 1, 2, . . . , be thet tq1
Ž .subsequent seller beliefs along the unique equilibrium continuation. The

seller ’s expected equilibrium re¨enue from this period onward can be expressed
as

` ¨ F ¨ y F ¨Ž . Ž .ty i ti ny1n d ¨ y F ¨ f ¨ d¨ . 6Ž . Ž . Ž .Ý H ž /f ¨Ž .¨ ty iy1is0

Now consider a sequential auction game in which the seller conducts
first price auctions in every period with reserve prices. In this game, given
a reserve price, R , in period t, if the highest bid exceeds R , the biddert t
submitting the bid obtains the object and pays the amount bid. If no bid
exceeds the reserve, then the game moves to the next period and the seller
names a new reserve price. Theorem 2 shows that in this game, there is a
pBe which is very similar to that of the sequentially optimal second-price
auction.

Ž .THEOREM 2 Revenue equivalence . There exists a perfect Bayesian
equilibrium of the sequential first price auction such that along the equilibrium

w xpath, for e¨ery seller belief 1, ¨ , the equilibrium reser̈ e price and the seller ’st
expected re¨enue along the equilibrium is the same as the sequentially optimal
second price auction.

Theorem 2 demonstrates that there is a pBe for the first-price sealed bid
auction which replicates the payoffs of the equilibrium in the second price
auction. Thus, the well-known revenue equivalence theorem for one-shot

Ž .auctions with independent private values see Milgrom and Weber, 1982
extends to the dynamic auction environment. Furthermore, the reserve
prices in the two auctions coincide.
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4. COMPARATIVE STATICS

When a single seller faces a single buyer and has the strategic power to
make take-it-or-leave-it offers in every period, Gul, Sonnenschein, and

Ž .Wilson 1986 prove, formally, a conjecture of Coase that, as the time costs
of waiting until the next period go to zero, the expected profits of the seller
converge to the profits she would enjoy against only the buyer with the
lowest valuation. That environment, of course, is a special case of the
environment analyzed here and, not surprisingly, a generalized version of
the Coase conjecture also holds. Theorem 3 shows that as the time costs
go to zero, the expected seller revenues converge to the expected revenues
from an auction with a reserve price set at the lowest valuation.7 In the
case of more than one bidder, this corresponds to the revenues earned in a
no-reserve price auction.

Ž .THEOREM 3 Coase conjecture .

¨ XH 1lim P ¨ s Y nf X dF dX .Ž . Ž .H Hdy1 H 1 1 Y 116

1 1

That is, as d approaches one, the expected re¨enue of the seller is the same as
in a game with no reser̈ e price.

The next result uses Theorem 3 to provide a bound on seller revenues
when she cannot commit to keeping the object off the market in the event
the reserve price is not met.

ˆCOROLLARY 2. Let P denote the seller ’s expected re¨enue in a static
w xoptimal auction beginning from any period with beliefs 1, ¨ . Let P denotet d

the expected re¨enue in the sequential second price auction, and let P denote
1the expected re¨enue in an auction with no reser̈ e price. For any d G ,2

ˆP y P P y Pd TF ) 1 y d ,Ž .
P P

where T is approximately

n ¨ y 1Ž .t
T f 2) q 1 . 7Ž .nž /F zŽ .1

7 In a continuous time version of this game where the seller’s valuation equals the lowest
Ž .bidders valuation, Milgrom 1987 shows the existence of a perfect equilibrium with the same

feature.
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Corollary 2 bounds the gains from using the sequentially optimal auc-
tions relative to a one-shot auction without reserve. It depends on the
discount factor, the number of bidders, the range of possible values, and
the likelihood that any given bidder has a low enough valuation that he

Ž Ž ..would trade only in the last period of the auction game, F z . By1
Ž . Ž .Lemma 2 and the assumption that f ? ) 0, F z is bounded above zero1

for all d and n.

COROLLARY 3. For ¨ G z and n ) 1, as d approaches one, there existst 1
an « ) 0, independent of d , such that the first period equilibrium reser̈ e price
exceeds 1 q « .

By Theorem 3, as agents become more patient, seller expected revenue
converges to expected revenue from the no-reserve auction. In the stan-
dard Coase situation, with n s 1, a consequence of this result, is an initial
price that is very close to the final price of one. If n ) 1, so the situation
is one of a nontrivial auction, Corollary 3 shows that this does not imply a
trivial reserve price in general. The initial reserve price remains above one.
Furthermore, the next theorem illustrates that, as the number of bidders
becomes large, seller revenue approaches that achievable in an auction in
which the seller can commit to a static auction with a reserve price. This
result is somewhat obvious since even in the one-shot case, as n becomes
large, the reserve price tends not to add much to expected revenues. More
significantly, for the case in which the equilibrium solution is differen-
tiable, it shows that the equilibrium reserve price approaches the optimal
reserve price in a static auction.

Ž .THEOREM 4. If for all n, there is a number M such that ­g* ¨ r­ ¨ F M,
then as n becomes large the sequentially optimal reser̈ e prices in each period
approach the static optimal reser̈ e price.

Whether or not the condition of Theorem 4 is satisfied will depend on
how well-behaved is the sequence of seller optimization problems corre-

Ž .sponding to Eq. 3 . Typically, we might expect it to fail if g turns out not
to be singleton-valued for some cutoff bidder type ¨ along the equilibriumt
path. In the linear case, since g is linear the condition is trivially satisfied.

Ž .If the objective function g ¨ , x, w is concave in x for all ¨ , then at t
version of the theorem of the maximum would imply the differentiability of
g .

Theorem 4 implies a monotonicity of the reserve prices in the limit as n
becomes large. One might expect that as d approaches one, the equilib-
rium reserve price falls; however, analytic comparative statics in d do not
appear to be available. Theorem 5 yields some information on the behav-
ior of the reserve prices and cutoff bidder types for informationally ‘‘small’’

Ž .games which end within two periods .
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w . Ž .THEOREM 5. Let ¨ s 1, z . For all n and d such that ¨ F z n9, d 9H 2 H 2
for any n9, d 9 in a neighborhood of n and d ,8 in the unique pBe of the
sequential auction game,

Ž .i the first period reser̈ e price R falls as d increases and rises as n1
increases.

Ž .ii the second period equilibrium reser̈ e price R is the same indepen-2
dent of d and n.

Ž . Ž . Ž . Ž .iii there is a number ¨ satisfying 0 s F ¨ y F ¨ y ¨f ¨ such thatH
nŽ .the probability that trade occurs in the first period is gï en by 1 y F ¨ . In

particular the probability trade occurs in the first period is independent of d
nŽ .and depends on n only as 1 y F ¨ depends on n.

Recall that in optimal static auctions with independent private values,
the optimal reserve price is independent of the number of bidders. Theo-
rem 5 illustrates that this result does not extend to auctions in which the
seller cannot commit to keeping the good off the market. There is good
intuition for this difference. With the possibility of future auctions, along
any equilibrium path, the opportunity cost to a bidder to failing to trade in
a given auction is determined by the continuation value from subsequent
auctions. That is, in any period, a bidder’s net value of trading is an
induced value determined in part by the continuation path of the equilib-
rium. A bidder’s expected utility from an auction is determined in part by
the degree of competition. Thus rises in n increase the opportunity cost of
a failure to trade. In the second to last period, this is the only effect at
work, since in the last period the seller’s reserve price is, by assumption,
independent of n. In longer games, though, there is the additional effect
that the seller alters her reserve price as well in response to changes in the
profile of induced bidder valuations brought on by changes in n.

The reader acquainted with literature on mechanism design might
wonder why an assumption on distributions commonly used in the analysis
of reserve price auction, the so-called inverse hazard rate condition, is not
needed here. There are two reasons. First, by construction, we restrict
attention to the smaller class of mechanisms which is the class of reserve
price auctions. Thus, in a full sequentially optimal mechanism game, where
the strategy choice of the seller may range across the whole class of
implementable mechanisms, the equilibrium path is likely to be different
in the absence of this assumption. However, in a different environment

Ž .where many sellers compete in mechanisms, McAfee 1993 shows that, in
fact, seller choices of reserve price auctions are a necessary feature of

8 Note that z will in general vary with d and n. In this sense, the results of Theorem 5 are2
to be thought of as ‘‘local’’ results. We are grateful to an associate editor who pointed out this
partial dependence.
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equilibria. Second, the assumption of an inverse hazard rate condition is
often used to ensure the concavity of the seller’s static optimization
problem and thus the uniqueness of a solution. As is evident in the
proof, we do not require the seller’s best response correspondence to be
singleton-valued in order to obtain uniqueness of the equilibrium path. In
periods where the seller’s best response correspondence may be multiple-
valued, self-interest on the part of the seller ensures that actions are taken
in early periods to ensure that the highest element of this set is selected.
Ž .See Lemma 3 and the discussion in footnote 8 .

5. CONCLUSION

The results of our analysis confirm natural conjectures about the ability
of sellers to impose reserve prices. As in the case of sequential bargaining,
the ability to impose a credible reserve price hinges on the seller’s ability
to commit to either destroy the product in the event of no sale or keep it
for herself. Excess rents are derived from this commitment power. The
paper also suggests testable implications of the theory of sequentially
optimal auctions. Suppose data which tracks objects for sale at a sequence
of auctions and records the number of bidders andror the length of time
between auctions were available. Theorem 4 and the example in Section 4
provide predictions about the response of reserve prices to changes in
interest rates, auction frequency, and the number of bidders. A note of
caution must be voiced though. The practice of many auctioneers may

Ž .frustrate the attempt to gather such data. Ashenfelter 1989 remarks on
the tendency of auctioneers to keep reserve prices secret. One possible
explanation of this behavior involves common values which we rule out in
our model. Thus, the phenomenon of secret reserve prices, themselves,
may be treated as evidence that the current private value model is not

Ž .appropriate. See Vincent, 1994 . However, some auctioneers do post
explicit reserve prices, sometimes as a matter of policy, and in other cases,
effective reserve prices may be derivable from other data such as suggested
minimum bids. Unless bidders are required to apply for eligibility before

Ž .bidding as happens in many government auctions , it may also be ex-
tremely difficult to extract exact information on the number of bidders.
Thus, the positive applications of the theory of sequentially optimal
auctions are limited, as are many results from the theory of auctions, by
the availability of the appropriate data. Nevertheless, as the analysis of
Section 4 illustrates, there remain normative applications of the theory
that may be useful either in providing guidance to policymakers or deriving
information about other, hidden, aspects of the auction environment.
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APPENDIX

Ž .Proof of Lemma 0. i Fix a reserve price R and any bidder and let dBt 1
be the density of the highest bid of the other n y 1 bidders. Conditional
on submitting a serious bid, trade will occur in the current period with
probability one. The expected return from any bid b is

R bt¨ y R dB q ¨ y B dB .Ž . Ž .H Ht 1 1 1
0 R t

For any bidding behavior of the other bidders, a bid of b s ¨ maximizes
this expression.
Ž . Ž .ii Observe that if a bidder bids seriously against R then by i he bidst
Ž .b ¨ s ¨ and will never bid if ¨ - R . Let dB be the density of thet 1

highest of the other n y 1 bids in the current period and consider the
expected utility from the equilibrium continuation to a bidder of type ¨
when the history is h , the bidder has not submitted a bid in the currentt
period and the game has continued to the next period. Denote this by

Ž .V ¨ , h . If ¨ submits a bid thenB t

¨Rt w x¨ y R dB q ¨ y B dB G d V ¨ , h Prob B - R . 8Ž . Ž . Ž . Ž .H Ht 1 1 1 B t 1 t
0 R t

Suppose there is a type ¨ 9 ) ¨ who does not submit a bid. Then

¨R ¨ 9t¨ 9 y R dB q ¨ 9 y B dB q ¨ 9 y B dBŽ . Ž . Ž .H H Ht 1 1 1 1 1
0 R ¨t

w xF d V ¨ 9, h Prob B - R . 9Ž . Ž .B t 1 t

Ž . Ž .Subtracting 8 from 9 and rearranging yields

w xProb B F R1 t¨ 9 y ¨ F d V ¨ 9, h y V ¨ , h . 10Ž . Ž . Ž .Ž .B t B tw xProb B F ¨1

Observe that a bidder of type ¨ can always mimic the behavior of bidder of
Ž .type ¨ 9. Let a ¨ 9, h be the probability a bidder who behaves as if hetq j t

were ¨ 9 obtains the object in period t q j in the pBe following history ht
Ž . Ž .calculated from period t and let p ¨ 9, h be the expected price paidtq j t
conditional on obtaining the good. By definition

`
tq jV ¨ , h G d a ¨ 9, h ¨ y p ¨ 9, h 11Ž . Ž . Ž . Ž .Ž .ÝB t tqj t tqj t

js0
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while

`
tq jV ¨ 9, h s d a ¨ 9, h ¨ 9 y p ¨ 9, h . 12Ž . Ž . Ž . Ž .Ž .ÝB t tqj t tqj t

js0

Ž . Ž . Ž .Subtracting 11 from 12 and combining with 10 yields

`w xProb B F R1 t j¨ 9 y ¨ F ¨ 9 y ¨ d d a ¨ 9, h ,Ž . Ž .Ý tq j tw xProb B F ¨1 js0

a contradiction since the sum of the a ’s must be one or less.

Ž . Ž .Proof of Lemma 1. H3 r x, w - x for x ) w since it is a convexi
combination of x and values strictly less than x. To see how it changes
with w,

U­ r x , w F x d r ¨ , g w F wŽ . Ž . Ž . Ž .Ž .i Y iy1 iy2 Y1 1s d y wf w .Ž .Y1ž /­ w dw

Ž .This term is positive by H3 for i y 1. Furthermore,

­ r x , w F x ­ r x , wŽ . Ž . Ž .i Y i1 s F x q r x , w f xŽ . Ž . Ž .Y i Y1 1­ x ­ x

s xf x q 1 y d F xŽ . Ž . Ž .Y Y1 1

or

­ r x , wŽ .i
F x s x y r x , w f x q 1 y d F x ,Ž . Ž . Ž . Ž . Ž .Ž .Y i Y Y1 1 1­ x

Ž .so r x, w is increasing in x for x G w. Since r is also increasing in w andi i
U Ž .since g is increasing, Eq. 5 is satisfied for i.iy1

Ž .H1 Since g is continuous in ¨ and x and increasing and continuous ini t
Ž .r , since r x, w is increasing and upper semicontinuous, g is upperi i i

Žsemicontinuous. A version of the theorem of the maximum exploiting the
Ž .. Ž . Ž .fact that w ) g w then implies that P ¨ is continuous and g ¨ isj i t i t

upper hemicontinuous.
Ž . Ž . Ž .H2 To see that g ¨ is increasing, let y - y9 and x g g y , x9 gi t i
Ž . Ž . Ž .g y9 , and suppose that x9 - x. To save on notation, let m s r x, w F xi i Y1
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Ž . Ž . Ž . Ž .for some w g g x and m9 s r x9, w9 F x9 for some w9 g g x9 .iy1 i Y iy11

By the induction hypothesis, w9 - w. By definition,

y9 X1g y , x , w q nY dF f X dXŽ . Ž .H Hi 1 Y 1 11
y x

q mn F y9 y F y s g y9, x , w 13Ž . Ž . Ž . Ž .i

and

y9 X1g y , x9, w9 q nY dF f X dXŽ . Ž .H Hi 1 Y 1 11
y x9

q m9n F y9 y F y s g y9, x9, w9 . 14Ž . Ž . Ž . Ž .i

Ž . Ž .Subtracting Eq. 14 from 13 yields

x
n F y9 y F y m y m9 y Y dFŽ . Ž .Ž . H 1 Y1ž /x9

s g y9, x , w y g y9, x9, w9 y g y , x , w y g y , x9, w9 .Ž . Ž . Ž . Ž .Ž .i i i i

15Ž .

Ž .The right side of Eq. 15 is nonpositive by definition of x, y, x9, and y9.
Since w9 F w and we have shown that r is increasing in w, by definitioni
of r ,i

m s r x , w F xŽ . Ž .i Y1

G r x , w9 F xŽ . Ž .i Y1

x
s m9 q 1 y d xF x y x9F x9 q d Y dF .Ž . Ž . Ž .Ž . HY Y 1 Y1 1 1

x9

Ž .We can rewrite the left side of 15 therefore as greater than

n 1 y d F y9 y F y x y x9 F x9Ž . Ž . Ž . Ž . Ž .Ž . ½ Y1

<q F x y F x9 x y E Y x9 F Y F x .Ž . Ž . Ž .Ž . 5Y Y 1 11 1

Since x ) x9 this expression is strictly positive}a contradiction. There-
Ž . U Ž .fore, g x is increasing and g x is increasing and upper semicontinuous.i i

B
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Proof of Lemma 2. Observe that

­ g ¨ , x , 1Ž .1 t s n 1 y d F ¨ y F x y xf x F x .Ž . Ž . Ž . Ž . Ž .t Y1­ x

Ž .Since f x ) 0, there is an « ) 1 such that this expression is strictly less
w . Ž .than zero for all ¨ g 1, « . Fix i y 1. By definition, for x«g ¨ , x F zt i t iy1

Ž . Ž .and therefore P x s P x . Sincei iy1

P ¨ y d P x s n F ¨ y F x r x , g x F xŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .i t i t i iy1 Y1

¨ Xt 1q n Y f X dF dXŽ .H H 1 1 Y 11
x x

q d P x y P xŽ . Ž .Ž .iy1 i

s n F ¨ y F x r x , g x F xŽ . Ž . Ž . Ž .Ž . Ž .t i iy1 Y1

¨ Xt 1q n Y f X dF dXŽ .H H 1 1 Y 11
x x

and

P ¨ y d P x G 1 y d P ¨Ž . Ž . Ž . Ž .i t i i t

¨ Xt 1G n Y f X dF dX 1 y d ,Ž . Ž .H H 1 1 Y 11
1 1

Ž .we have that for all x g g ¨ , there exists a n ) 0 independent of i suchi t
that x F ¨ y n . Since g is increasing and upper hemicontinuous andt i

Ž .satisfies g x F x y n , the convex hull of g has an inverse which isi i
w xincreasing and upper hemicontinuous defined over 1, ¨ and lies aboveH

� Ž . 4the line, y y n s x. Thus z s max ¨ ¬ g ¨ s z exists and satisfiesi i iy1
z G z q n . This procedure extends the definition of z over the intervali iy1 i
w x1, ¨ . BH

Proof of Theorem 1. The proof proceeds by defining necessary condi-
tions of bidder and seller strategies iteratively over the support of bidder

s Ž .types via two lemmas. Let R ¨ , h the seller’s best response reservet t
price in some pBe, s , following a history, h , and with beliefs that biddert

w x s Ž .types lie in 1, ¨ , and let P ¨ , h be her expected payoff. Conditiont t t
Ž .C1 a, j partly characterizes the strategy of the seller

C1 a, j : ;s , ;¨ - a, ;h , Rs ¨ , h s r x , g U x for x g g ¨ .Ž . Ž . Ž . Ž .Ž .t t t t j j j t
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Ž .Condition C2 j characterizes strategies of bidder types below z andj
partially for types above z .j

C2 j : ;s , ;h , ;¨ - z , if R ) r ¨ , g U ¨ , No BidŽ . Ž .Ž .t t j t j t j t

;¨ , if R F r ¨ , min g ¨ , Bid B ¨ s ¨ .Ž . Ž .Ž .t t j t j t t t

LEMMA 39. If C1, C2 hold for j s i y 1 and a s z , then C1 holds foriy1
j s i and a s z .i

Proof of Lemma 3. Let a denote the supremum of a’s such that C1˜
holds for j s i and a. Since for ¨ F z , r s r and g s g for˜ t iy1 iy1 i iy1 i

Ž .¨ - z , then a G z . Observe that for a ) 1, since P ¨ is boundedt iy1 iy1 t
Ž .above zero, and f ¨ is positive, there is always an « ) 0 such that

Ž Ž . Ž .. Ž . Ž . w .F ¨ y F a ¨ n q d P a - P ¨ , for all ¨ in a, a q « . SupposeH i i
Ž .a - z . Then there exists a s and h and ¨ in a, a q « such that thei t t
Ž .seller’s best response reserve price exceeds r z , z and, since ai iy1 iy2

reserve price below that level generates payoffs determined by C2, the
payoff from s is bounded above and below by

P ¨ F P s ¨ , h F F ¨ y F a ¨ q d P a - P ¨ ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .i t t t t H i i t

which is a contradiction. Therefore, a G z .i
Ž . Ž . Ž .Now, suppose that R s r ¨ , y for y - g* ¨ , y g g ¨ . Sincet tq1 tq1 tq1

Ž . Ž .r x, ¨ is strictly increasing in ¨ for every ¨ 9 ) ¨ and every y9 g g ¨ 9 ,tq1
Ž . Ž .there is an « ) 0 such that r ¨ 9, y9 G r ¨ , y q « . A reserve price oftq1

r 9, instead of R , yields the seller an expected revenue oft

g ¨ , ¨ 9, y9 G n F ¨ y F ¨ 9 r q « F ¨ 9Ž . Ž . Ž . Ž . Ž .Ž .t t t Y1

¨ ¨t t
q Y dF f X dX q d P ¨ 9 .Ž . Ž .H H 1 Y 1 1 i1¨ 9 ¨ 9

Since this function is continuous in ¨ 9

lim g ¨ , ¨ 9, y9 y g ¨ , ¨ , yŽ . Ž .¨ 9x ¨ t t ty1tq 1

G ne F ¨ y F ¨ F ¨ ) 0;Ž . Ž . Ž .Ž .t ty1 Y ty11

9 Observe that the optimization problems as stated are ‘‘as if’’ the seller can also choose in
Ž .period t her most favorable cutoff level among her optimal responses in period t q 1 if the

Ž .object fails to sell. This is not true in general since g ¨ may not be single valued. Lemmatq1
Ž3 illustrates that since if there were a possibility that the future belief is unfavorable that is,

.¨ too low then the upper hemicontinuity and monotonicity of the optimal choice function
would have allowed the seller to do better by selecting a slightly higher cutoff level this
period. This would yield only first-order costs in the probability of a sale but increase the
reserve price by an amount bounded above zero. Therefore, for t ) 2, the equilibrium reserve

Ž . Ž Ž . Ž Ž ...price is R ¨ s r g* ¨ , g* g* ¨ .t t t t
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the seller could have improved on R by offering a slightly higher reservet
price, contradicting the assumption that R was an equilibrium reservet
price. B

LEMMA 4. If C2 holds for j s i y 1 and C1 holds for j s i and a s z ,i
C2 holds for j s i.

Ž .Proof of Lemma 4. Since r x, w is strictly increasing in both its
arguments and g is an increasing correspondence, the correspondence,
Ž Ž .. Ž . Ž .r x, g* x , x«g ¨ , has a unique inverse, call it r r . By Lemma 0, for any

reserve price, R , there is a ¨ such that only bidder types above ¨t tq1 tq1
Ž Ž ..submit serious bids. Suppose R ) r z , g* z and ¨ - z . By C1, thet i i tq1 i
Ž U Ž . Ž Ž ..next period reserve price is R F r g ¨ , g* g* ¨ . By bidding intq1 tq1 tq1

period t, ¨ receivestq1

¨ y R F ¨ , 16Ž . Ž . Ž .tq1 t Y tq11

while by waiting until the next period, he would get no worse than

¨ tq1
d ¨ y R F ¨ q ¨ y Y dF . 17Ž . Ž . Ž . Ž .Htq1 tq1 Y tq2 1 Y1 1¨ tq2

Ž . Ž .By definition of r, Eq. 17 strictly exceeds Eq. 16 so all types in the
neighborhood of ¨ do better not to bid when the reserve price is R .tq1 t

Ž Ž .. Ž .Now suppose that R - r z , min g z and ¨ ) r R s n . Let t bet i i tq1 t
the smallest number such that along the equilibrium continuation path,

Žz ) ¨ . If the equilibrium involves mixed strategies, then the follow-i tqtq1
.ing argument can be made using distributions over continuation paths. If

Ž Ž . Ž .. Ž .¨ G ¨ , then R ) r g* ¨ , g*g* ¨ by C1 and bidder type ¨ wouldtqt tqt

have done better to bid when the reserve price was R . If ¨ - ¨ , sincet tqt

Ž Ž .. Ž Ž ..¨ G z , R G r z , min g z G r z g* z andtqty1 i tqty1 i i iy1 iy1

R s 1 y d ¨Ž .tqty1 tqty1

¨d tqty1
q R F ¨ q Y dF ,Ž . Htqt Y tqty1 1 Y1 1ž /F ¨Ž . ¨Y tqty1 tqt1

Ž Ž ..we must have R G r z , g* z and ¨ G z . But this violatestqt iy1 iy1 tqt iy1
the optimality of type ¨ ’s decision not to bid when the reserve price is Rt
since

¨d
R s 1 y d ¨ q r y , g* y F ¨ q Y dF ,Ž . Ž . Ž .Ž . Ht Y 1 Y1 1ž /F ¨Ž . Ž .g * ¨Y1

Ž .for some y« Convexhull g ¨ . B
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Ž . Ž .A simple adaptation of Lemmas 3 and 4 show that C1 and C2 hold
for i s 1. Therefore, we can now apply Lemmas 3 and 4 iteratively to
specify necessary conditions of equilibrium behavior over the whole inter-

w xval, 1, ¨ . Sufficiency is not quite shown. The result would follow simply ifH
Ž .g ¨ was shown to be single-valued. In general it is not, but the argumentt

Ž .given in Gul et al. 1986 is easily adapted to show sufficiency as well.
Suppose the seller posts an out of equilibrium reserve price R9,
Ž Ž .. Ž Ž ..r ¨ , min g ¨ - R9 - r ¨ , g* ¨ , for some ¨. Subsequent randomization

of the reserve price off the equilibrium path is a characteristic of the
Ž .equilibrium in order to convexify the correspondence, g ? . All bidder

types ¨ 9 ) ¨ submit bids and all bidder types ¨ 0 - ¨ do not submit bids.
In the next period, the seller randomizes between her two best response

Ž . Ž . Ž Ž .choices of ¨ , g* ¨ and ming ¨ by offering either r min g ¨ ,tq1
Ž Ž ... Ž Ž . Ž Ž ...g* min g ¨ or r g* ¨ , g* g* ¨ so as to make bidder types ¨ and

higher willing to submit bids in the current period. B

Proof of Corollary 1. An adaptation of an argument in Myerson and
Ž . Ž .Satterthwaite 1983 shows that, if U ¨ is the expected utility of a buyer in

Ž . tŽ¨ . ny1Ž .any Bayesian equilibrium, then dU ¨ rd¨ s d F ¨ almost every-
Ž .where, where t ¨ is the equilibrium period of trade of a bidder of type ¨ .

Ž .By Theorem 1, this period is deterministic up to a selection of ¨ .tq1
Integrating by parts yields

T¨ ¨t ty ii ny1n U ¨ f ¨ d¨ s d F ¨ 1 y F ¨ d¨ .Ž . Ž . Ž . Ž .Ž .ÝH H
1 ¨ ty1q iis0

Using the definition of total expected surplus as the sum of seller’s
expected revenue and total expected buyer surplus and rearranging terms

Ž .yields 6 . B

Proof of Theorem 2. The proof proceeds by characterizing strategies
and showing that they comprise a pBe of the sequential first price auction.

Ž Ž .. Ž .Let r ¨ , g* ¨ and g ¨ be as in the proof of Theorem 1.
w . Ž Ž ..Seller Strategies. For every seller belief, 1, ¨ , if R s r ¨ , g* ¨ ,t ty1 t

Ž Ž . Ž Ž ... Ž Ž ..post a reserve price R s r g* ¨ , g* g* ¨ . If r# s r ¨ , min g ¨ Ft t t t t
Ž Ž ..R - r ¨ , g* ¨ s r* post a reserve price R s r# with probability bty1 t t t

and R s r* with probability 1 y b , where b satisfiest

R sb *r min g ¨ , g* min g ¨ q 1yb r g* ¨ , g* g* ¨ .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .ty1 t t t t

w . Ž Ž ..Seller beliefs. For any beliefs 1, ¨ in period t y 1, if r ¨ , min g ¨ty1 t
Ž Ž ..F R F r ¨ , g* ¨ , and no bid is submitted, beliefs in period t arety1 t

w x1, ¨ . If 1 ) R , and no bids are submitted, beliefs in period t are thet ty1
Ž Ž .. w .same as in period t y 1. If R ) r ¨ g* ¨ , beliefs are 1, ¨ .t ty1 ty1 ty1
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Ž .Buyer strategies. In every period, if ¨ s r R , where r is thetq1 t
Ž Ž ..inverse of r ¨ , g* ¨ , all ¨ - ¨ do not submit bids. All ¨ G ¨ submittq1 tq1

Ž .bids, B ¨ ; R , wheret

¨
B ¨ ; R F ¨ s x dF q c,Ž . Ž . Ht Y Y1 1

1 18Ž .
B ¨ ; R s R .Ž .tq1 t t

First suppose that this profile of strategies comprise a pBe. In this case,
w xthen for any seller belief, 1, ¨ , the sequence of bidder types who bid in allt

subsequent periods is the same as in the second price equilibrium; that is,
trade occurs with the same bidder type in the same period as the second
price auction. A simple adaptation of the Myerson]Satterthwaite reason-
ing then implies that the expected seller revenues are the same. The
definition of the seller strategies implies that the equilibrium reserve
prices are the same. Thus, as long as we can show that the strategies form
a pBe, the theorem is proved.

Note that the seller beliefs satisfy Bayes’ rule given the buyers’ strate-
gies.

w .To show the optimality of buyer strategies, let the seller beliefs be 1, ¨ t
Ž .and the reserve price be R and ¨ s r R . Let r# st tq 1 t

Ž Ž Ž ... Ž Ž . Ž Ž ...r min g min g ¨ and r g* ¨ , g* g* ¨ s r*. Finally, supposetq1 tq1 tq1
that buyers follow the proposed strategies in all later periods. Then, by
definition of the bidding functions next period, if the reserve price is r*, a
bidder type ¨ bidstq1

¨ tq1
B ¨ F ¨ s x dF q cŽ . Ž . Htq1 Y tq1 Y1 1

1

¨ tq1
s x dF q F g* ¨ r*,Ž .Ž .H Y Y tq11 1Ž .g * ¨ tq1

Ž .where the constant term is determined by 18 . A similar equation holds
for a next period reserve price of r#. Therefore, given the strategies of the
other bidders, a bidder of type ¨ who bids when the current reserve istq1
R will only bid R and receives expected utilityt t

¨ y R F ¨ . 19Ž . Ž . Ž .tq1 t Y tq11
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If ¨ waits until next period, his expected utility istq1

d ¨ y bB ¨ ; r# y 1 y b B ¨ ; r* F ¨Ž . Ž . Ž . Ž .Ž .tq1 tq1 tq1 Y tq11

¨ ty1
s d ¨ y b x dF q r#F min g ¨Ž .Ž .Htq1 Y Y tq11 1ž /ž Ž .min g ¨ tq1 20Ž .

¨ q1ty 1 y b x dF q r*F g* ¨ .Ž . Ž .Ž .H Y Y tq11 1ž / /Ž .g * ¨ tq1

Ž . Ž .By definition of ¨ , and b , 19 equals 20 so bidder type ¨ is justtq1 tq1
indifferent between bidding this period and next. Since this period utility
increases faster in bidder type than next period utility, that means that all
bidder types above ¨ strictly prefer bidding and those below, strictlytq1
prefer not to bid. Finally, standard arguments from first price auctions

Ž .illustrate that the bid function 18 is a best response for bidders who bid
in period t.

Finally, to show the sequential optimality of the seller’s strategy, sup-
w xpose that the seller’s strategy is sequentially rational for all beliefs 1, ¨

with ¨ F z . Then, for any beliefs satisfying this restriction, a furtheri
application of Myerson]Satterthwaite illustrates that the expected payoff

Ž .for the seller from the pBe is the same as P ¨ . An argument similar to
that of Lemma 3 for Theorem 1 then shows that there is an « ) 0, such
that for all n F z q « , a reserve price such that ¨ F z is optimal and,i tq1 i
therefore, given proposed bidder behavior, expected equilibrium payoffs

Ž .are again given by P ¨ . The same argument then is applied to ¨ F z q 2«i
and so on. That the proposed seller behavior is optimal for ¨ F z is1
straightforward to show. B

Ž .Proof of Theorem 3. Part of this proof follows Tirole 1988 . We show
first that for any « ) 0 there is a T such that all equilibria of games with
1 ) d ) « end with probability one after T periods, independent of d . For
any d , Theorem 1 shows there exists a unique equilibrium in which the
decision of bidders whether to participate given a current period reserve
price is time independent and the seller’s profits depends only on the
current state, ¨ . For any d and pBe, let ¨ , ¨ , ¨ be the equilibriumt t tq1 tq2
cutoff levels of participating bidders in periods t, t q 1 and t q 2, respec-

Ž .tively, with ¨ G z and define F ' F ¨ . Note that given thetq2 1 tqi tqi
current state, ¨ , since bidder strategies are stationary, a seller couldt
always have chosen a reserve price to induce a next period state ¨ tq2
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instead of ¨ so we must havetq1

¨ Xt 1ny1 w xR F n F y F q nY f X dF dXŽ .H Ht tq1 t tq1 1 1 Y 11¨ ¨ty1 ty1

ny1 w xq dR F n F y Ftq1 tq2 tq1 tq2

¨ Xtq1 1 2q d nY f X dF dX q d P ¨Ž . Ž .H H 1 1 Y 1 tq21¨ ¨tq2 tq2

¨ Xty1 1ny1 w xG R F n F y F q nY f X dF dXŽ .H Htq1 tq2 t tq2 1 1 Y 11¨ ¨ty2 ty2

¨ ¨t tq1
q nY f X dF dXŽ .H H 1 1 Y 11¨ ¨tq1 tq2

¨ Xt 1q nY f X dF dX q d P ¨ ,Ž . Ž .H H 1 1 Y 1 tq21¨ ¨tq1 tq1

where the second integral has been broken to facilitate rearranging terms.
This can be written as

ny1 ny1 w xR F y R F n F y Ft tq1 tq1 tq2 t tq1

ny1 w xG 1 y d R F n F y FŽ . tq1 tq2 tq1 tq2

¨ Xtq1 1q 1 y d nY f X dF dXŽ . Ž .H H 1 1 Y 11¨ ¨tq2 tq2

¨ ¨t tq1
q nY f X dF dX q d 1 y d P ¨ .Ž . Ž . Ž .H H 1 1 Y 1 tq21¨ ¨tq1 tq2

By definition of R and ¨ ,tq i

¨ tq1ny1 ny1 ny1 ny1R F y R F s 1 y d ¨ F y R F q d Y dF ,Ž . Ž . Ht tq1 tq1 tq2 tq1 tq1 tq1 tq2 1 Y1¨ tq2

Žso substituting into the above inequality, rearranging terms by subtracting
the last term in the above equation and dropping the last integral in the
right side of the inequality, and dividing by 1 y d ) 0 yields

ny1 ny1w x w x¨ F n F y F y R F n F y Ftq1 tq1 t tq1 tq1 tq2 t tq2

¨ ¨t tq1
y nY f X dF dX G d P ¨ .Ž . Ž .H H 1 1 Y 1 tq21¨ ¨tq1 tq2
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Rearranging once more gives

¨ tq1ny1 ny1w xn F y F n F y F y Y dFŽ . Ht tq1 tq1 tq1 tq2 1 Y1¨ tq2

w x ny1 w xq ¨ y R F n F y F G d P ¨ .Ž .tq1 tq1 tq2 t tq2 tq2

The first term is positive and F F F , so the inequality can be writtentq2 tq1

¨ tq1ny1 ny1 ny1w x w xn F y F ¨ F y F y nY dF q ¨ y R FŽ . Ht tq2 tq1 tq1 tq2 1 Y tq1 tq1 tq21¨ tq2

G d P ¨ .Ž .tq2

Since ¨ y 1 G ¨ y p for any price paid by a bidder in any equilib-H tq1 tq1
rium, this implies

w x w x ny1 nn F y F ¨ y 1 F G d P ¨ G dF .Ž .t tq2 H tq1 tq2 tq2

The last inequality comes from the fact that the seller can always post a
Ž .reserve price of one in any period. By Lemma 2, F z ) 0 for any1

Ž .¨ ) z for ¨ - z the game ends in two periods . Rewrite the inequal-tq2 1 t 3
ity as

n n
dF z dF zŽ . Ž .1 1

F y F G G .t tq2 ny1 n ¨ y 1n ¨ y 1 F Ž .Ž . HH tq1

Since the inequality holds for all t such that ¨ ) z , define ı to be theˆtq2 1
smallest integer exceeding

n ¨ y 1Ž .H
.n

dF zŽ .1

Suppose that along the equilibrium path, there is a ¨ G z such thattq2 1
t q 2 G 2 ı. Sinceˆ

ntr2 t dF zŽ .1
1 G F y F s 1 y F G q 1Ž .Ý 2 k 2 ky2 tq2 ž /2 n ¨ y 1Ž .Hks0

n
dF zŽ .1

) ı G 1,ˆ
n ¨ y 1Ž .H

which is a contradiction. Observe that ı is decreasing in d . Combined withˆ
Corollary 1, this implies that as d approaches one, the seller’s expected
revenue approaches the expected revenue in a game with no reserve price.

B
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ˆŽ .Proof of Corollary 2. By Myerson 1981 , P and P satisfy

T ¨ F ¨ y F ¨Ž . Ž .tq i t ny1P s n ¨ y F ¨ f ¨ d¨ 21Ž . Ž . Ž .Ý H ž /f ¨Ž .¨ tq iq1is0

and

¨ F ¨ y F ¨Ž . Ž .t t ny1P̂ s n ¨ y F ¨ f ¨ d¨ , 22Ž . Ž . Ž .H ž /f ¨Ž .¨̂

where ¨ is the optimal reserve price for the static auction. By Corollary 1ˆ
and by the definition of ¨ ,̂

¨ F ¨ y F ¨Ž . Ž .t t ny1P F ¨ y nF ¨ f ¨ d¨Ž . Ž .Hd ž /f ¨Ž .¨̂

F ¨ y F ¨Ž . Ž .¨̂ tT ny1q d ¨ y nF ¨ f ¨ d¨ ,Ž . Ž .H ž /f ¨Ž .1

Ž .where T is defined in 7 replacing ¨ with ¨ . Rearranging terms yieldsH t
the result. B

d Ž .Proof of Corollary 3. Let r ¨ denote the function determining the
maximum reserve price for which a bidder with valuation ¨ will submit a
serious bid. Then

d w xlim r ¨ s E Y ¬ Y F ¨ .Ž .d ª 1 1 1

� 4To see this, note that for any equilibrium corresponding to d , let ¨ tq1qi
denote the expected sequence of cutoff levels along the equilibrium path

d Ž .when a reserve price R s r ¨ is posted. Using the proof of Theoremt tq1
1, r d satisfies

r d ¨ F ¨Ž . Ž .tq1 Y tq11

Ž .T d ¨ tq1q iis d 1 y d ¨ F ¨ q d Y dF .Ž . Ž .Ý Htq1qi Y tq1qi 1 Y1 1ž /¨ tq2q iis0

By Theorem 3 since the number of terms in the summation term is
Ž .bounded by T , this limit is computed by replacing T d with T and letting

Ž .d go to one. Theorem 5 iii illustrates that for ¨ G z , the equilibriumt 1
cutoff type of the next serious bidder is bounded above 1, independent of
d . By the above argument, the minimal reserve price needed to induce his
participation is also bounded above 1. B
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Proof of Theorem 4. Fix d and current seller beliefs, ¨ . From Corollaryt
1, the expected revenue of a seller with beliefs ¨ , can be expressed solelyt

� 4as a function of her beliefs in subsequent periods, ¨ . Let ¨ be thetq i tq1
� 4seller’s next period beliefs and ¨ , i s 2, 3, . . . , T , be the subsequenttq i

beliefs determined by the unique equilibrium continuation.

g ¨ , ¨Ž .t tq1

Ny1 ¨ F ¨ y F ¨Ž . Ž .tq i ti ny1s n d ¨ y F ¨ f ¨ d¨Ž . Ž .Ý H ž /f ¨Ž .¨ tq iq1is0

¨ F ¨ y F ¨Ž . Ž .t ts ¨ y dF ¨Ž .H X1ž /f ¨Ž .¨ tq1

Ny2 ¨ F ¨ y F ¨ F ¨ y F ¨Ž . Ž . Ž . Ž .ty1q i tq1 t tq1iq d ¨ y yÝ H ž /f ¨ f ¨Ž . Ž .¨ ty2q iis0

=dF ¨ .Ž .X1

Differentiating with respect to ¨ ,tq1

­ g ¨ , ¨Ž .t tq1 s 1 y d F ¨ y F ¨ y ¨ f ¨Ž . Ž . Ž . Ž .Ž .t tq1 tq1 tq1­ ¨ tq1

Ny2
iq 1 y d d d F ¨ y F ¨Ž . Ž . Ž .Ž .Ý t tq1

is0

=
F ny1 ¨ ­ ¨Ž .tq2qi tq2qjiP js0ny1 ­ ¨F ¨Ž . tqq1qjtq1

­ ¨ ­ g ¨ , ¨ 1Ž .tq2 tq1 tq2q d .ny1­ ¨ ­ ¨ nF ¨Ž .tq1 tq2 tq1

The last term is zero for all n since ¨ must be chosen optimally whentq2
the seller beliefs are ¨ and the second term goes to zero as n becomestq1
large if the condition on the derivative of g is satisfied. The first term is
the same as the necessary condition for the static optimization problem.

B
Proof of Theorem 5. By Theorem 1 trade occurs with probability one by

the second period, for ¨ - z the initial reserve price is one and tradeH 1
w .occurs immediately. For ¨ g z , z , the optimal cutoff level of the sellerH 1 2

is a ¨ - w and bidders in this range submit serious bids only if R is less2 1 1
Ž .than r ¨ , 1 given by1

¨
r ¨ , 1 F ¨ s 1 y d ¨F ¨ q d Y dF .Ž . Ž . Ž . Ž . H1 Y Y 1 Y1 1 1

1
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The expected utility for a seller who chooses cutoff level x is

g ¨ , x , 1 s r x , 1 nF x F ¨ y F xŽ . Ž . Ž . Ž . Ž .1 t 1 Y t1

¨ Xt 1q nY f X dF dXŽ .H H 1 1 Y 11
x x

x X1q d nY f X dF dX .Ž .H H 1 1 Y 11
1 1

A necessary condition for x to be chosen optimally is that the derivative of
Ž . Ž . Ž .this expression be zero or that F ¨ y F x y xf x s 0, independent ofH

d and n. B
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