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Two auctions are held in sequence with the possibility of learning between the second and the 
first. The buyer optimally chooses to discriminate against the winner of the first auction in the 
second. The optimal mechanism has a discontinuity in the winner’s second bid; this strictly 
dominates a sequence of independent sealed bid auctions. 

1. Introduction 

Procurement by governments accounts for 10-15 percent of national 
product in most Western nations [McAfee and McMillan (1985a)]. Conse- 
quently, analyses of procurement policies apply to a significant portion of 
economic activity. This paper considers sequential procurement: a buyer will 
purchase items in sequence, with costs correlated across time. Thus, if 
auctions are held, bids in the first auction reveal something about costs in 
the second. This paper, then, contributes to the optimal auction literature, 
with the major application in government procurement. 

It is arguable that nonsequential procurement is the exception; once a 
government buys an item, it continues buying it for the rest of time. 
Governments fix roads, buy military items, plant trees, etc. every year. These 
all represent sequentially procured items. Often the same firms bid each year, 
and this is presumed here for simplicity. 

Research and development projects are often followed by production 
projects. Generally, the winner of the R&D project (the incumbent) has an 
advantage in production, for he may have learned something useful during 
the research that he keeps secret, or because the mere fact that he won the 
R&D bidding is itself a signal of an advantage in this area. Such a situation 
means that the government possesses useful information: in the second 
project, expectations concerning the incumbent do not coincide with expect- 
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ations concerning rivals. This alone is sufficient to cause asymmetric, or 
discriminatory, treatment of incumbent and other firms. 

Prior to describing the model, a few general remarks are warranted. The 
standard auction model’ is the only model of competition for government 
contracts available, although the various principal-agent models are ap- 
plicable when there is no competition. In addition, government procurement 
provides the best application of the optimal auction model, for it is with a 
government that the model’s assumptions are most closely satisfied. 

There are two major assumptions of the optimal auction model that are 
most plausible for a government. First, the agents are assumed to be risk 
neutral. As governments typically self-insure, and deal with large firms, this 
hypothesis is quite reasonable, although it is also plausible for other agents 
bidding for items with small value. In addition, it is presumed that the 
auction designer can commit to a mechanism. This means that he can bind 

himself to a decision rule which may not be subgame perfect, i.e. circum- 
stances may arise where the agent wishes to renege on his commitment. 
Governments, by passing laws which bind themselves and are enforced by 
third parties (the courts), can feasibly bind themselves to mechanisms. In 
addition, it may be that, for a government, the repercussions of reneging are 
very large. 

This is important because even such a simple institution as a sealed-bid 
auction leaves an agent with the desire to renege. In a sealed-bid auction, 
firms submit bids privately, and the lowest bidder is awarded the job and 
paid his bid. In general, it is straightforward to deduce this bidder’s 
opportunity cost from his bid. Thus, by reneging on the commitment to pay 
the lowest bid, the buyer could then offer to pay the firm its cost, and the 
firm would agree. Of course, knowing that the buyer might do this, the firm 
bids higher, and no solution to the auction design problem exists. 

When the buyer can commit, and the firms are risk neutral, and have 
identically and independently distributed costs, any of the standard auction 
forms minimize expected procurement costs. This includes the sealed bid 
auction, which is favored by all of the levels of U.S. governments. However, 
as we shall show, if there are two projects, and the costs in the second are 
reflected in the costs on the first, the independent sealed bid auctions are no 
longer optimal. Indeed, the optima1 auction is discriminatory: it treats the 
incumbent and rivals differently. 

The model employed is a simple learning model. There are two projects. n 
firms have privately observed opportunity costs, drawn identically and 
independently from the cumulative F, for the first project. They bid for the 

‘Myerson (1981) and Riley and Samuelson (Pl). See also Milgrom and Weber (1982) for an 
extensive analysis of these auctions in a very general setting. McAfee and McMillan (1986) 
provide a survey. Matthews (1983) allows for risk aversion, while Myerson (1981) discusses 
nonidentical (but still independent) distributions of values. 
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project, and the lowest bid wins. Prior to the second project, each firm gets a 
second draw from F, and their costs on the second project is the minimum of 
the two draws. Thus, if the minimum is lower than first-period cost, the 
second firm has learned how to do the job more cheaply. 

We derive the mechanism that minimizes the sum of expected procurement 
costs on the two projects. It is convenient to use the revelation principle’ 
and design an incentive compatible mechanism, so that payoffs are structured 
to provide the agent with an incentive to honestly reveal his costs. 

The optimal mechanism has several interesting features. First, it is dis- 
criminatory: the winner of the first project (the incumbent) is disadvantaged 
in the second. In the second project, the incumbent needs significantly lower 
cost than his rivals in order to win. This is a policy used by Ontario Hydro 
[McAfee and McMillan (1985a)], Ontario’s electric utility. Second, a positive 
fee is charged at the time of the first auction for the privilege of bidding in 
the second, and this extracts surplus from the rivals (that is, firms other than 
the incumbent), and only the incumbent has positive profits in the second 
period. 

Third, the discrimination rule is discontinuous: a slight perturbation of the 
incumbent’s cost causes a discrete jump in the probability of winning the 
contract. To understand these results, we must consider the intuition behind 

the standard auction. Suppose, x 1,. . ,x, are n identically and independently 

distributed opportunity costs with cumulative F, and continuous density .f: 
Let .x1 and x2 be the first and second lowest order statistics, respectively. The 
buyer expects to pay x2 for the good, and buy from the firm with lowest cost 
(in an English auction, the buyer pays x2 exactly, for the second-last bidder 
drops out at his cost .x2, so the lowest cost bidder wins the bid at price x2). 
Furthermore, let E be the expectation over the x’s. Then 

Ex2 = E(x’ + F(x’)/f(x’)). (1) 

Thus. the function3 

44 = x + W/f(x) (2) 

effectively translates costs into prices paid. Suppose xi is the ith firm’s cost 
draw on the first project, and yi the draw on the second, so that the firm’s 

cost is 

zi = min {xi, y,>. (3) 

2Harris and Townsend (1981) and Myerson (1982). 
3This corresponds to x - [ 1 - F(x)]/[f(x)] In a selling auction. See Myerson (1981), and 

others. 
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Then define 

$txi, Yi) = 
i 

J(xi), xi 5 Yi> 
y_ 

I) Yi<Xi. 

Then, on the second project, the buyer will optimally choose to buy from 
the firm with the smallest $. To see this, note that the buyer can charge a fee 
equal to the minimum second-period profits of any firm.4 The expected 
profits associated with winning with a yi can be extracted. Thus, second- 
period profits are essentially irrelevant, for they can be taxed away prior to 
the revelation of the yi. However, this argument does not apply to the 
incumbent, simply because he may win with xi instead of only with yi. Thus, 
his profits cannot be completely extracted (insofar as they vary with xi, for 
otherwise the firm would choose to exit when expected profits were low). 
However, they can be reduced by discriminating against him. This is 
precisely what occurs. Considering J(xi) to be the incumbent’s first-period 
price, a rival can beat the incumbent merely by beating his first price, instead 
of beating his first-period cost. 

This can be seen most clearly in nonstochastic auctions. Suppose one firm 
was known to have lowest cost C,. The Bertrand equilibrium is for this firm 
to supply the good at a price equal to the second lowest cost C,. However, if 
the buyer can credibly threaten to buy from the second lowest cost firm 
unless a price of C, (plus an infinitesimal, perhaps) is offered, the low-cost 
firm is forced to supply at cost. This illustrates why it is useful to 
discriminate in favor of high-cost firms - to make low-cost firms bid more 
competitively. 

In the stochastic setting, of course, such discrimination carries the risk of 
picking the higher cost supplier. In the optimal auction, this risk is balanced 
against the savings created by forcing low-cost firms to bid more 

aggressively. 
Although this minimizes the buyer’s procurement cost, the solution is 

inefficient, in that it will occasionally be the case that, if the incumbent is 
denoted with subscript I, and rivals, R, that 

and x,sy,. In this instance, he picks the rival with higher cost. This is not 
unexpected, and can be compared with Myerson (1981). Myerson, in a one- 
shot auction, considers the case when xi is drawn from a cumulative Fi that 

4This works insofar as the lirms do not know their second-period costs. If they do know their 
costs, as in the first period, the use of a fee is effectively the same as a reserve price. See Milgrom 
and Weber (1982). 
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is not the same for each xi. In this case, the buyer effectively chooses the firm 
whose i minimizes xi+Fi(xi)/FI(xJ. By our analogy that J measures prices, 
the Myerson auction, quite naturally, picks the firm with the lowest price. In 
our auction, since second-period rents are extractable insofar as they do not 
vary with first-period information, choosing the minimum Ic/ chooses the 

lowest effective price. 
One way of explaining these results involves reserve prices. In the second 

auction the buyer uses a reserve price J(xJ, so that, to win, firms must beat 
the going price J(x,). Otherwise, the incumbent is selected. This reserve price 

is endogenous in that it arises through the first-period auction. 

This paper is related to work by Palfrey (1983) on bundling of goods. 
Palfrey examines the decision to sell several distinct goods in a single 
auction, or to auction them off separately. He finds the revenue maximizing 
seller will choose to bundle (auction together) when there are few bidders. 
The analysis is executed in sealed-bid and second-price auctions and is, in 
general, not the optimal auction. However, the work is closely related to 
ours, concerning several goods at a single point in time, where ours is a 
single good at several points in time. In both cases the auction designer 
chooses to ‘tie-in’, or connect, the outcomes of the auctions. 

Uhlike Palfrey’s results, it is significant that the optimal strategy is 
independent of the number of bidders. That is to say, the choice of whether 
to choose the incumbent over rival in the second period does not depend on 
the number of rivals. Obviously, the extent of competition affects the 
probability the incumbent is selected. But the discrimination rule itself does 
not vary, for basically the same reason that optimal reserve prices are 
invariant to the number of bidders. 

This intuition is quite straightforward, but the problem’s solution is less so. 
Consequently, many of the paper’s developments are placed in the appendix, 
with only the highlights included in the text. 

2. The model 

The buyer desires to have two projects done in sequence. There are n firms 
capable of doing both projects, and the buyers and firms are assumed to be 
risk neutral. It is presumed that the buyer can commit to a mechanism: that 
is, the buyer can guarantee he will use a given decision rule, even when this 
rule is not, in some realization, as good for the buyer as reneging. 

Each firm i gets an independent draw xi, that is private information, from 
a twice continuously differentiable cumulative distribution function F, f’= F’, 
satisfying 

d F(x) 
-x+ ~ 
dx f(x) 20. 
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This is the usual assumption on the inverse hazard rate, for the case of 
buying instead of selling [Myerson (1981) Riley and Samuelson (1981)]. 

The buyer is presumed to use an incentive compatible mechanism [see 
Myerson (1982)] in order to contract the two projects. In an incentive 
compatible mechanism, there is a Nash equilibrium in which the agents 
respond honestly with their type xi. This is without loss of optimality, by the 
revelation principle. 

xi is the firm’s cost of doing the first project. The first stage of the 
mechanism involves the buyer requesting the agent’s costs, and based on the 
vector of reported costs, choosing an agent to do the project and paying the 
agents. Risk neutrality simplifies this, because the agents may be paid based 
on their own report 3i, since the agent is indifferent between a risky payment 
(based on the other agents’ reports) and its expected value. Let q(&) be the 
payment to agent i, based on the report ?i. A hat will generally be used to 
distinguish a report from a true value. The agent with the smallest ii is 
chosen to execute the project, and is thereafter called the incumbent; all other 
agents are called rivals. Subscripts I and R are used to refer to incumbent 
and rivals, respectively. 

Prior to the initiation of project 2, the agents obtain a second independent 
draw yi from F, and their second-period costs are the minimum of their two 
draws: 

zi=min{xi,yi}, i=l,..., n. (7) 

As before, yi is private information. This second draw is like learning, with 
recall, although the learning is exogenous to the agent. The revelation 
principle guarantees that the buyer need not tell any firm the other firms’ 
reports. This has a straightforward intuition. Effectively, the buyer can 
commit to pay the firms and choose one in such a way to mimic the firms’ 
behaviors (in this case, their second-period reports) as if they were informed. 
In other words, the buyer commits to simulating the game where the firms 
are told the other firms’ responses in a game where the firms are not told. 
Thus, with commitment, not telling the agents anything is without loss of 
generality. However, since one agent must actually do the work, that agent 
must know he was selected, while the others know they were not. As a result, 
the incumbent and rivals have different posteriors of each other’s xi’s, since 
the incumbent knows his 2, was lowest, while the rivals know at least one 
agent had xi<xR. 

This is captured by using the incumbent’s expectation operator 



R. Luton and R.P. McAfee, Sequential procurement auctions 

and the rival’s expectation operator: 

where 

x,=inf{xIF(x)=lj 

is the largest possible x, and 

ftx - j) = )Jj flxi) 

187 

(9) 

(10) 

(11) 

dX_j=dX,dX2...dXj~1dXj+l...dX, (12) 

Eq. (8) expresses the fact that the incumbent knows that all n- 1 rivals 

reported costs Xiz,?,. Eq. (9) embodies any rival’s knowledge that one firm 
reported cost x, less than & and all other firms reported cost in excess of x,. 

The mechanism for the second project involves the firms reporting their 

new draw yi, and then being paid pi(yi,X) based only on the report yi and 
the first period reports X. The agent is assigned the second project with 
probability pi(yi,xi,yPi, x-J. 

As is usual with sequential problems, we solve the second project first and 

then solve the first, as decisions made in the first period are exogenous in the 
second. 

We presume that, if yi>xi, then 

~i(Yitxi,Y-i,x-i)=~i(xi,xi,Y-i,x-i). (13) 

That is to say, if the second-period cost is irrelevantly high (yi>xi), this does 
not decrease the probability of winning. This will be true in the constructed 
solution. 

3. The second project 

For any agent j, let Ej be the expectation over x _ j and y _ j, j E {R, I}, and 

vj(.9~X)=Ej/4_C~X~Y-j~ x-j)+ (14) 

If the agent was honest in the first period, and has observed y in the second, 
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he obtains profits: 

i 

Pm-YV(9,4, YSXY 
7-C= 

P(9) - 44 4, Y > x, 
(15) 

since v is the probability the agent is chosen and spends min {x, y}. 
Remember that a hat indicates a report, rather than the true value. The 
subscript j is suppressed for clarity, along with X in p. 

Incentive compatibility forces 

I Y$(Y? 47 YSX, 

P’(Y) = 
dV 

x-((Y,x)=O, Y>X, 
8Y 

(16) 

by (13). 
c 

The second-order condition [take &~/(c?J)’ from (15) substituting (16) at 
y=$] is: 

v nonincreasing in y, (17) 

Integrating (16) from y to x: 

P(Y)=Pw+J “y 
y w, 4 ds 

“I 

=p(X)-XV(X,X)+YV(Y,X)+jV((s,X)ds. 
Y 

(18) 

Eq. (13) insures this holds for y > x as well. Define 

r(x) = P(X) - XV(Y, X) + j V(S, X) ds. 
Y 

(19) 

Now suppose the agent has reported R in the first period. This is necessary 
since, to establish incentive compatibility holds in the first period, we must 
consider the effects of lying in the first period, including the effects on the 
second. This agent anticipates second-period profits of 

7I= p(9) - zv(j, a) 

=r(A)+(j-z)v(j,z?)+iv(s,P)ds, (20) 
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where 

z=min {x,y}, 

Thus, n is maximized at jj = z, by (17) yielding profit: 

n = r(i) + f v(s, i) ds. 
Z 

(21) 

(22) 

(23) 

The firm does not know his realization of y when R is chosen, and thus we 
need only concern ourselves with the expectation of rc over y. Call this 

7?(x, a). 

Lemma I. 

~Ejx2(~,~)=-[l--F(x)Jvj(x,P), ~E{I,R}. (24) 

The proof involves integrating (23) over y, and then differentiating with 
respect to x, and is provided in the appendix. 

Eq. (24) is the only use of the second project in the first, but a couple of 
points bear mention. There is an asymmetry in the second project between 
the incumbent and the rivals, and the buyer will exploit this to lower second- 
period costs. The profit function is defined entirely in terms of the probability 
p in expectation. Thus, second-period profits can be expressed in terms the 
choice variable p. We will now show that the buyer’s total procurement costs 
can similarly be expressed. This makes the optimization problem quite 
straightforward. 

4. The first project 

Now consider a firm who knows his own cost x, and is considering a 

report 2. Given that the other agents respond honestly, his probability of 
becoming the incumbent is [l -F(a)]“-‘. Since q(i) is the payment made, he 
anticipates profits of 

7?(2, x)=&Z)-x(1 -F@))“-l + [I -F(~)]“-‘E,7$(Z,x) 

+[1 -[I -F(a)]“-‘]E&(~,x), (25) 
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which is, simply, payment, minus cost of doing the first project, plus expected 
second-period profit. 

Since the firm chooses 3 to maximize rrr(&x), the envelope theorem yields: 

~d(x,x)= $(i,X) 
2=x 

= - [( 1 -F(x))“_ ’ + [ 1 - F(x)]“v,(x, x) 

+[1-(1-F(x))“~‘](1-F(x))v,(x,x)]. (26) 

By integrating (26) and shifting integrals, using (8), (9), and (14), we obtain 
that expected profits n&r’, satisfies 

Theorem 1 

nEn* = n 7 F(x)[ 1 -F(x)]“- ’ dx 
0 

F(xi)(l - F(xi)) - 
X 

f Cxi) 

f(x)f(Y-i)didY-i. 

Furthermore, the buyer’s expected payment is 

@=7 x+Fo 
[ 1 f(x) 

n[l -F(x)]“-‘f(x)dx 
0 

where 

f 
Yi, if y, <xi, 

*txi3 Yi) = ! ,x, + F(xi) 
I f(xi)’ ifYi2xi. 

(27) 

(28) 

(29) 

The proof is tedious, and left for the appendix. 
Recall the intuition given that $ is the effective price the principal is 

paying, when agents have costs xi and yi. Eq. (28) expresses this directly, for 
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the second term is precisely the expected value of $, given p is the 
probability of choosing the ith firm, and f(x)f(jj) is the density of the 
(x,,y,),i= 1,. . . ,n. The first term is the second-order statistic, and thus the 
expected payment on the first project. 

One way of understanding this is that a reserve price J(x,) is operated in 
the second auction, and the lowest yi wins if it is less than the reserve price, 
and otherwise the incumbent is selected. In addition, the reserve price is 
endogenous, depending on the first auction’s outcome. To make this incen- 
tive compatible, of course, the payment function p(yi,X) is discontinuous as 

well, since the profit function is continuous. 
The buyer picks the lowest Ic/ because pi is a probability, and therefore 

non-negative and constrained by 

Minimizing (29) subject to (30) is immediate. 
The proof of the theorem does contain one technical development of note. 

By the use of the envelope theorem on profit, it is quite simple to express 
protit as an expectation over p and the densities. Then, with some notation- 
ally complicated but straightforward rearrangement of limits of integration, 

one obtains expression (29). 

5. Conclusion 

There are several major conclusions to be drawn from this model, that 
should generalize to more complex linked sequences of projects. First, a fee 
to bid on the second project will be charged at the time of the first project, 
and will generally be decreasing in costs reported on the first project [this 
follows from (25)]. It will not succeed in extracting all the rents, for the 
winner of the first project will generally acquire second-period rents. 

Second, the buyer will use a discrimination rule in the second period that 
is unfavorable to the incumbent: the incumbent needs lower cost to win than 
a rival. Indeed, the rival need only beat the incumbent’s first-period price to 
win, while the incumbent must beat his own first-period cost. 

The discrimination rule is not continuous, and thus the payment function 
is not, as well, in the second period. This is precisely the rule by Ontario 
Hydro in practice, for they require the incumbent to lower his cost by 15 
percent in order to continue [see McAfee and McMillan (1985a) for a wealth 
of institutional details]. 

It is useful to conceal the bids made in the first auction from the other 
bidders. The reason is that, otherwise, the firms will know x1, and the second- 
period payments will depend directly on x,. Without revealing this inform- 
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ation, only the incumbent’s payment will depend on xi. Of course, the 
optimal mechanism can be implemented with revelation of x,. However, 
second-period payments to rivals will, in general, depend on x,, being given 

by (18). 
There is a stylized fact that we see the same firms winning contracts from 

the government because of some official malfeasance, bribery or the like. This 
model suggests a different explanation: winning the first contract of a 
sequence is a signal of comparative advantage, and so one expects to see the 
firm win more often in future contracts. 

If the inefficiency of the optimal auction is an objection, it should be noted 
that the normal sealed bid auction is, itself, inefficient. The reason is, since 
the incumbent and rival have different conditional probabilities of winning, 
they will bid differently. Indeed, at cost z,=x,, the incumbent expects positive 
profits, since he has a positive probability of winning. A rival, however, has a 
zero probability of winning at this cost, and thus expects zero profits at a bid 
of x, (this is true when X, is announced. If x, is not announced, then this will 
change the outcome). Thus, it follows that the firms bid differently in a sealed 
bid auction. For a more intensive analysis of discrimination in sealed bid 
auctions, see McAfee and McMillan (1985b). 

Finally, in some realizations, the incumbent’s first-period cost may be 
completely ignored. This occurs whenever J(x,) 2x,,,. In such a case, the 
buyer provides incentives so that the incumbent competes on an equal basis 
with the rivals, and his former advantage ignored. 

Appendix 

Proof of Lemma 1 

x2(% x) = 1 nf(y) dy 

=r(2)+7 3’ v(s,2)dsf(y)dy 
0 minIx,y) 

= r(2) + i j v(s, 2) dsf(y) dy + 7 j v(s, 2) dsf(y) dy 
OY X X 

=r(P)+F(y);v(s,2)ds X+ jF(y)v(y,P)dy 
Y 0 0 

+ [ 1 - F(x)] j v(s, 2) ds 
X 

= r(2) +; v(s, 2) ds + i F(y)v(y, 2) dy. 
X 0 
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Thus, 

&$(a, x) 

ax = -( 1 - F(x))vj(x, a). 

193 

Proof of the theorem. Note that ~l(x,,x,) can be set to zero, since 79(x,x) 
is nonincreasing by (26), and, were ~l(x,,,, x,,,) >O, a uniform fee can be 
charged equal to 7c1(x,,x,), for the right to participate. All firms would be 
willing to pay this fee. Thus, expected profit is 

Ed =xs” d(x, x)f(x) dx 
0 

=j%‘(x)[l -F(x)]“-‘dx 
0 

+T F(x)(l -F(x))[[l -F(x)]“-’ 

x E,v,(x,x) + [l -(l -F(x))“- ‘]E,v~(x,x)]] dx 

=y F(x)[l -F(x)]“-‘dx 
0 

+(n-l)jpqx)(l-F(x))[ p.4 $...jf 
n 

xCIR(X,X,Y-i,X-i)S(y-i)f(X-i)dy-idx-idx 

=j%(x)[l -F(x)]“-‘dx 
0 
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x P,(Y,, xnr y-n, x -,)f(j3)S(x) dj d;u 

X Ptt(Yi, Xi> Y - ir x - i)f(Y)f(x) djdx 

=$F(x)[l-F(x)]“-‘dx 

X PLYi, Xi, Y i, X - i)f(~))f(x) dy d%, 

where 

using (13), and Fubini’s Theorem. 
Note, as well, that 

nEx’=nj%(x)[l-F(x)]“-‘dx 
0 

since the previous expression differs from this only by the construction that 
x, was the lowest of the xI)s (probability l/n). 

The total cost incurred is, in the second period: 

since zi is the cost incurred by the ith agent, and this happens with 
probability ~i(y,X). Therefore, since expected payment @ must be expected 
cost plus expected profit: 

@= i ss”-.p zi+cxi~yi. .I f(Z)f(P) dx dj. Q.E.D. 
i=l 0 0 
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