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We study a new model of complementary valuations, which we call “proportional complementarities.” In

contrast to common models, such as hypergraphic valuations, in our model, we do not assume that the extra

value derived from owning a set of items is independent of the buyer’s base valuations for the items. Instead,

we model the complementarities as proportional to the buyer’s base valuations, and these proportionalities

are known market parameters.

Our goal is to design a simple pricing scheme that, for a single buyer with proportional complementarities,

yields approximately optimal revenue. We define a new class of mechanisms where some number of items are

given away for free, and the remaining items are sold separately at inflated prices. We find that the better of

such a mechanism and selling the grand bundle earns a 12-approximation to the optimal revenue for pairwise

proportional complementarities. This confirms the intuition that items should not be sold completely separately

in the presence of complementarities. In the more general case, a buyer has a maximum of proportional

positive hypergraphic valuations, where a hyperedge in a given hypergraph describes the boost to the buyer’s

value for item i given by owning any set of itemsT in addition. The maximum-out-degree of such a hypergraph

is d , and k is the positive rank of the hypergraph. For valuations given by these parameters, our simple pricing

scheme is an O(min{d,k})-approximation.
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1. Introduction
Consider a setting where multiple items are being sold, and a buyer’s valuations for the items have

complementarities. That is, the buyer derives some value from owning a combination of items that

is not present when owning any of the items individually, as in the following examples.

Microsoft Office Example: A person who values producing documents will value software such

as Microsoft Word that helps him in this task. If the person wants to include some charts in his

document, then this is made easier and faster by having another piece of software that specializes

in making charts such as Microsoft Excel. Thus owning Excel in addition to Word boosts the value

of Word for him, since he can then produce more documents in the same amount of time.

Cloud Services Example: A cloud service provider offers multiple heterogeneous items that are

both substitutes and complements. You can purchase a general purpose virtual machine (VM) or

a special purpose VM such as a “data science VM”; these are substitutes. You can also purchase

an upgrade such as a fast solid state disk-drive (SSD) which would be complementary to either of

those VMs.

The goal of this work is to understand how a revenue-maximizing seller should price items such

as Microsoft Office products or cloud services when facing a buyer with such complementarities. To

this end, we introduce a new model of complementarities, design a pricing scheme for this model,

and show worst-case approximation guarantees.

In recent years, there has been a surge of research activity on optimal combinatorial pricing. This

is the problem of determining and pricing bundles of heterogeneous items in order to maximize

revenue from selling to a buyer who has a combinatorial valuation function. The theme of the

research has been simple vs. optimal, where simple pricing schemes are shown to approximate the

optimal (possibly randomized) pricing scheme to within a universal constant multiplicative factor,

independent of the number of items. E.g., for additive valuations, where the buyer’s valuation for

any set of items is just the sum of her valuations for each individual item, [Babaioff et al., 2014]

show that the revenue from either selling each item separately (srev), or selling the grand bundle

of all the items (brev) is a 6-approximation. Similar results have been extended to much broader

settings, such as one buyer with unit-demand [Chawla et al., 2007] and subadditive [Rubinstein and

Weinberg, 2015] valuations, and multiple buyers with additive [Yao, 2015], unit-demand [Chawla

et al., 2010], gross-substitutes [Chawla and Miller, 2016], and XOS valuations [Cai and Zhao, 2017].

All of the above valuation classes are complement-free. In contrast, in practice, bundling is most

attractive when the items are complementary to each other. The first such result for complementary

valuations is by [Eden et al., 2017b], who consider the following positive hypergraphic (ph) valuation

model: each item is a vertex in a given hypergraph. For any hyperedge given by a subset of items S ,
the buyer gets an additional value of vS > 0 if he gets all of the items in S . The value vS for each

hyperedge S is drawn independently from a known prior distribution. Eden et al. show that in

this case the approximation ratio of max{srev, brev} is Θ(d), where d , the maximum-degree of

the hypergraph, is the maximum number of hyperedges that any one item is part of. Further, they

show that other natural parameters that have been considered for complementary valuations have

very bad lower bounds. The approximation ratio could be exponential in the number of itemsm, as

well as in the positive rank k , which is the maximum size of (number of items in) a hyperedge.
1

1
This is the choice of parameter used for welfare guarantees for combinatorial auctions, e.g., in [Abraham et al., 2012, Feige

et al., 2015, Feldman et al., 2015].



Submission 42 2

1.1. Proportional Complementarities Model
The ph valuation model for the Microsoft Office example would have three values, one each for

Word, Excel, and the pair (Word, Excel), with each of them drawn independently from a different

distribution. While having the values for Word and Excel be independent may be reasonable, that

the value for the pair (Word, Excel) be independent of the other two seems unrealistic. Similarly,

for the cloud services example, the PH model would have that the value for the pair (VM, SSD) be

independent of the value for the VM alone, which is once again unrealistic.

We introduce what we call a proportional complementarities model of valuations; a special case

of this model is proportional pairwise complementarties (ppc). We illustrate this model through the

examples we considered before.

Microsoft Office Example in the ppc model: We still have a value for each of Word and Excel, sayv1

and v2 respectively, that are independent of each other. Our model differs in how the buyer values

the combination of the two by assuming that the additional value derived from having both items

is due to a better utilization of either item, and hence is proportional to (rather than independent

of) the buyer’s base valuation for Word and for Excel. This is captured in our model by having a

multiplier for the pair (Word, Excel), denoted by η1,2; say Excel always adds 23% to the value of

Word, then we would have η1,2 = 0.23. One could get an estimate of this quantity by observing the

frequency of activities between the two, such as dragging Excel charts into Word. While not fully

general, these proportionalities make intuitive sense, because if a buyer values an item highly, he is

likely to care more about its complements too, as they enhance that item. The value for purchasing

both items in our model would then be

v1(1 + η1,2) +v2.

The other assumption we make is that while the seller doesn’t know the exact values, he knows

these proportions of complementarities. This is perhaps the least accurate assumption in applica-

tions, because such values could reasonably vary across individuals. However, in circumstances

where the way products are used together is approximately fixed, such as dragging Excel charts

into Word, it is not unreasonable to assume that these values are known. This is especially true

when it comes to “digital goods,” where data about interactions between items can be gathered,

and the parameters can be estimated from this data, e.g. via estimating cross-price elasticities.

Allowing the proportions (i.e., the ηs) to vary across individuals is an interesting direction for

future research. We present one possible approach via a common generalization of our model and

the ph model in Section 5. This generalization further illustrate the similarities and the differences

between the two models.

Proportional pairwise complementarities: We first define the ppc model. A single seller offersm
heterogeneous items for sale to a single buyer. (Equivalently, there is a population of buyers, but

no supply constraints on the seller, as is the case with digital goods like Microsoft Office products.)

We model the structure of the complementarities among the items via the following parameters,

which are assumed to be known to the seller:
2

ηi j ∈ R+ ∀ i, j ∈ [m], i , j .

The parameter ηi j captures how much having item j boosts the valuation that the buyer derives

from item i . The valuation of a buyer is determined by his type t , which is a vector in Rm
+ , and is the

2
We use the notation [m] to indicate the set of firstm natural numbers, {1, 2, . . . ,m }.
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private information of the buyer. The ith coordinate of t is ti , which represents his base valuation

for item i in the absence of any other items. If the buyer also gets item j, then his valuation for

item i is boosted by an additional ηi jti . From this, we get that for any bundle S ⊆ [m], the buyer’s

valuation for S is

v(t, S) :=
∑
i ∈S

ηi (S)ti , where ηi (S) = 1 +
∑

j ∈S\{i }

ηi j .

Note that ηi j need not be equal to ηji , and asymmetric boosts are only more general. We make the

Bayesian assumption that t is drawn from a product distribution Πi ∈mFi . The distributions Fi for
all i ∈ [m] (as well as the parameters ηi j ) are known to the seller.

This more general asymmetric case corresponds to directed graphs (and hypergraphs). Thus we

define the directed-positive-rank k of the graph to be the maximum size of (number of items in) the

source of a (hyper)edge. Thus, for the pairwise case, k = 1.

The general case: The general class of valuations we consider is defined formally in Section 2;

we give an informal description here. First of all, we allow hyperedges, instead of edges, i.e., each

pair of item i and a disjoint set of items T forms a directed hyperedge (T , i) and has a certain boost

associated with it, denoted by ηiT : this is the boost of having all items inT on item i . The valuation
of a set S now includes all possible boosts due to hyperedges (T , i) for T ⊔ {i} ⊆ S . We call this

class of valuations proportional positive hypergraphic (pph) valuations. The other generalization is

to allow the boost to be the maximum of the boost from multiple hypergraphs. We call this class of

valuations maximum of proportional positive hypergraphic (mpph) valuations. We denote by k the

directed-positive-rank and by d the maximum-degree of the hypergraph. We tie this back to the

cloud services example to show how such a generalization is useful.

Cloud Services Example: Suppose that we had access to two types of VMs, VM1 and VM2, that

are meant for different types of workloads. We can also purchase additional disk drives (DDs) that

allow us to run larger workloads. DDs come in two technologies, fast and slow, say DD1 and DD2.

Having either of the DDs can boost the value for a VM, and having both of them boosts it even

more but less than the sum of the individual boosts. This could be modeled as follows. There are 4

items, 1 and 2 are the VMs, and 3 and 4 are the DDs. For each of i ∈ {1, 2} and j ∈ {3, 4}, we have
the boosts ηi j as well as ηi {3,4} . Let x3 and x4 be binary variables indicating whether items 3 and

4 were respectively purchased or not. The value derived from item i for i ∈ {1, 2} depending on
these choices is

ti · (1 +max{ηi3x3,ηi4x4,ηi {3,4}x3x4}).

Thus VM1 can get a boost of η13 from having DD1, or η14 from DD2, but if you have both DD1 and

DD2, the boost is η1{3,4} rather than η13 + η14.

1.2. Pricing scheme
Almost all of the papers in this line of research consider the better of selling each item separately

and selling only the grand bundle. Pricing the grand bundle is (conceptually) easy: set the monopoly

price for the distribution of the buyer’s value for the grand bundle, which can be computed from the

given input. For simple valuations such as additive valuations, setting item prices to sell separately

is also easy: set the monopoly reserve for each of them separately. In our model, this completely

ignores the boost in the valuation on an item from having other items. Not surprisingly, this can be

provably far from optimum when you have complementarities; we therefore need a non-trivial

way to price the items in this case. We first illustrate our algorithm for finding these prices via a

numerical example.
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Numerical Example: Suppose, as shown on the left in Figure 1, that there are 4 items, numbered

1 through 4, and that we have non-zero ηs on the pairs (2, 1), (3, 2), (4, 3) and (1, 4). Let all ηs be
1. Suppose t1 and t3 are distributed identically as follows: the value is 2 w.p.

1

2
and 0 otherwise;

let t2 and t4 be distributed identically as follows: the value is 4 w.p.
1

2
and 0 otherwise. Each ti is

independent of the others.

We denote themonopoly price and themonopoly revenue for item i alone by ri andRi respectively.
For this example, we have the monopoly prices as r1 = r3 = 2 and r2 = r4 = 4; the revenues are

R1 = R3 = 1 and R2 = R4 = 2. Setting the monopoly prices for each item separately guarantees

a revenue of

∑
i Ri = 6. The actual revenue would be higher, but in general it is difficult to get a

better handle on it than this bound.

Fig. 1. Left: The 4-item example described above. Right: The directed graph where the weight of a directed

cut corresponds to a lower bound on the revenue of the corresponding separate/free mechanism.

Step 1: Construct a weighted directed graph. We construct a weighted directed graph with 5

vertices, one for each item, and a source node s . The weight on the edge (s, i) is Ri . The weight on
the edge (i, j) is ηjiR j . This graph is shown on the right in Figure 1.

Step 2: Find a max directed cut. We then find a cut in the graph that maximizes the number of

directed edges going from the “source” side to the “sink” side. From the figure, it is easy to see that

such a cut is given by the vertices s, 1 and 3 on the source side, the rest on the sink side, and has

weight 8.

Step 3: Set Prices. We set the prices for items on each side of the cut differently.

(1) The items on the source side have a price of 0. This set of items, denoted by F , are “free”. In

this case, items 1 and 3 are free.

(2) For the items on the sink side, we multiply the monopoly price ri by ηi (F ) (1 plus the boost i
gets from all the items on the source side). Then items 2 and 4 thus have a price of 8 each.

The weight of the cut, 8, is a lower bound on the revenue of this pricing scheme. Each of items

2 and 4 is bought at the price of 8 with probability
1

2
, giving a lower bound on revenue of 8. In

comparison, the best price for grand bundling is 12, which is bought with probability
5

8
, giving a

revenue of
15

2
, which is slightly lower. Both of these are still higher than the revenue lower bound

of 6 from setting separate prices of ri each.
In general, we introduce a class of mechanisms which we call separate/free. Like selling

separately, every item is sold separately at some price, and the buyer may take any set of items

so long as he pays the sum of their individual prices. However, we partition the items into “free

items” F , where for each item i ∈ F , the individual price of each such item is $0, and “priced items”

¯F = [m] \ F . Once the free set F is determined, we use the knowledge that the buyer will take the

free items to inflate the monopoly prices of the priced items by the boost on the item from also

getting the free set (and only the free set).
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Such mechanisms do capture a certain economic intuition that is seen in practice: giving some

items away for free in order to charge more for complementary items, e.g., Google sells the Android

OS for free since it is complementary to advertising revenue. One can also think of it as a certain

form of bundling: there is no reason to give away the free items unless the buyer purchases some

priced item. This is equivalent to bundling all the free items with any non-empty subset of paid

items. Going back to our cloud services example, such a pricing scheme could determine that one

of the two DDs should be free. We would then bundle that DD into the VMs; such bundles are

commonly observed in practice.

One difficulty in the above scheme is that in general, finding a max directed cut in a graph is an

NP-Hard problem. When restricted to polynomial time algorithms, the best worst-case approxi-

mation guarantee we can show is by placing each item independently into the free set with some

probability α , which is determined by min{d,k}. This is a little unsatisfactory since it doesn’t use

the specific market parameters η at all. (However, they are used in setting the prices once F is

determined.) An alternative is to use an approximation algorithm for the max directed cut problem,

such as the Goemans-Williamson algorithm. The advantage of this method is that it produces a free

set that makes use of the structure of the ηs; unfortunately, this does not improve the worst case

approximation ratio. In fact, we show that no algorithm can improve the approximation ratio when

used in conjunction with our current proof technique, but we conjecture that such an algorithm

would be better in practice.

1.3. Worst case approximation guarantee
Once again, we begin by illustrating our analysis using the numerical example earlier. For the sake

of analysis, we consider an instance of the pricing problem on the same set of items, with additive

valuations. The value distribution for item i in this instance, denoted by F̂i , is just the original
distribution Fi multiplied by ηi ([m]), the boost i can obtain from all of the items. In our example, F̂i
for i = 1 and 3 is 4 w.p.

1

2
and 0 otherwise, and for i = 2 and 4 is 8 w.p.

1

2
and 0 otherwise.

We relate the revenue from selling separately and selling the grand bundle on the given instance

to the corresponding mechanisms for the additive instance. It is easy to see that the bundle revenue

remains the same in both instances, as the complements buyer receives the boosts ηi ([m]) on every

item:

brev-ppc(F ) = brev-additive(F̂ ).

As we computed earlier, a lower bound on selling separately with our pricing scheme for the given

instance is 8. Selling separately for the additive instance gives a revenue of 12, which is 3/2 times 8.

So for this example, we have that

srev-ppc(F ) ≥
2

3

srev-additive(F̂ ).

More generally, srev-additive(F̂ ) is equal to the total the weight of all the edges in the digraph

that we construct. If you place each item on either side of the cut with equal probability, then each

edge is cut with probability
1

4
, which results in a factor of 4 between the two srevs. This is indeed

tight: consider a complete unweighted digraph; any cut can only cut a
1

4

th

fraction of edges.

We can now use a slight generalization of the result of [Babaioff et al., 2014] to bound the

optimum revenue for the additive instance, denoted by opt-additive(F̂ ), in terms of srev and

brev.

opt-additive(F̂ ) ≤ 2 srev-additive(F̂ ) + 4 brev-additive(F̂ ).

Finally, we show that the optimum revenue for the additive instance is only higher.

opt-ppc(F ) ≤ opt-additive(F̂ ),
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which gives an approximation ratio of 7 for this example, and 12 in general, working through the

inequalities above. Note that even for additive valuations, 5.2 is the best known approximation

ratio.

This last step may seem obvious, but it turns out to be quite tricky. One might expect a direct

argument, that given a mechanismM for the original instance, we construct a mechanismM ′
for

the additive instance, with a larger revenue. Such approaches are inherently difficult, as evidenced

by “Revenue non-monotonicity” in [Hart and Reny, 2012]. We instead argue the upper bound

by covering the dual of the smaller setting with the dual of the larger setting, a novel use of the

[CDW16] Lagrangian duality framework.

We show the following approximation guarantee more generally.

Theorem 1.1 (Informal). The better of brev and the revenue from a mechanism of type sepa-

rate/free is an O(min{d,k})-factor approximation to the optimal revenue for valuations in the class

mpph. When k = 1, i.e., the boosts are the maximum over directed graphs, the approximation factor is

at most 12.

Recall that d is the maximum-degree of the hypergraph, and k is the directed-positive-rank of the

hypergraph.

We also show that our analysis of Theorem 1.1 is tight up to a constant factor via the following

lower bound. A crucial step in our analysis is to upper bound the optimal revenue for mpph

valuations by the optimal revenue for an instance of additive valuations. Further, the actual revenue

of a mechanism from a buyer with proportional complements is extremely difficult to analyze.

Instead, we analyze a lower bound on the revenue we deem the “proxy revenue,” and we show

that with respect to our upper bound, no mechanism of the following type can give an o(k)-
approximation to the proxy revenue. The mechanisms we consider first partition the set of items

into bundles, designating one bundle as the free set. Each of the other bundles is priced separately.

The buyer always gets the free set for free. Specifically, the price for a bundle is its monopoly

reserve price inflated by the boosts of only the other items in its own bundle and by the free set, and

not by anything else. The proxy revenue undercounts the revenue in the same way, by assuming

that the buyer’s boosted values match the way prices are set in these mechanisms: only within

bundles and from the free set. We elaborate on motivation for using this proxy in Section 3.

2. Preliminaries
We now give the formal description of the mpph valuation model. There is a single seller offeringm
heterogeneous items for sale to a single buyer. The following parameters determine the structure of

complementarities among items via boosts to base valuations. There is a hypergraph with the set

of items [m] as vertices whose edges (T , i) correspond to a combination of items T and a disjoint

item i to which the combination gives a boost. Moreover, there could be several possible boosts

out of which only the highest is activated. For each item i ∈ [m], for each hyperedge (T , i), and for

each ℓ ∈ [K] for some integer K , we have the parameter ηℓiT ∈ R+.

Fig. 2. A directed graph representation of the η parameters.
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The buyer’s valuation for any bundle S ⊆ [m] is

v(t, S) =
∑
i ∈S

ηi (S)ti , where ηi (S) = 1 + max

ℓ∈[K ]

∑
T ⊆S\{i }

ηℓiT .

We refer to the case where the boosts are simply the sum (i.e. K = 1) as additive boosts, and the

general case (K > 1) as XOS boosts. Note that ηi (S) always includes the base valuation for item i (the
+1) so it is not entirely comprised of boosts, but we overload and call this term the boost anyway.

Observe that the boosts are always monotone in the set, that is, if ℓ(S) ∈ argmaxℓ∈[K ]

∑
T ⊆S\{i } η

ℓ(S )
iT ,

then it always the case that for all S ⊆ S ′,

ηi (S) = 1 +
∑

T ⊆S\{i }

ηℓ(S )iT ≤ 1 +
∑

T ⊆S ′\{i }

ηℓ(S )iT ≤ 1 + max

ℓ∈[K ]

∑
T ⊆S ′\{i }

ηℓiT = ηi (S
′) (1)

We assume that t is drawn from a product distribution F = Πm
i=1

Fi . The distributions Fi for all
i ∈ [m] and the ηs are all known to the seller. However, the type realization t is private information

of the buyer.

Our approximation ratios depend on the parameters k and d of the underlying hypergraph. The

parameter k , the directed-positive-rank, is an upper bound on the size of the set in any hyperedge,

i.e., |T | ≤ k for each hyperedge (T , i). The parameter d , the maximum-out-degree, is an upper bound

on the number of hyperedges that contain a particular vertex, i.e., for each i ∈ [m], |{ hyperedge
(T , j) : i ∈ T }| ≤ d . We suppress the dependence on the hypergraph in our notation, since it should

always be clear from the context. For the special case of pairwise complementarities (ppc) we follow

the notation in Section 1.1.

2.1. Optimal Mechanisms in Various Settings
From the revelation principle, we can restrict our attention to direct revelation mechanisms, where

the buyer reports his type. A mechanism is therefore defined by the allocation and the payment

functions. We allow randomized allocation rules, with the assumption that the buyer is risk neutral.

Let xS (t) denote the probability that the bundle S ⊆ [m] is allocated to the buyer of type t ; let
p(t) be his payment. The incentive-compatibility (IC) constraints require that for each buyer type,

the buyer maximizes utility by reporting his true type.
3
Among all IC mechanisms, the optimal

mechanism maximizes the expected revenue

Et [p(t)].

Notation: We use the following convention to denote the revenue from a particular mechanism

for a given class of valuations, for a particular distribution over types:

[Mechanism name]-[Valuation Class]([Distribution]).

For example, the optimal mechanism for ppc valuations with types drawn from F is denoted by

opt-ppc(F ). We drop the distribution when it is clear from the context. We also drop the valuation

class when it is additive (additive) and it is clear from the context: e.g., the revenue from selling

the grand bundle for additive valuations on types drawn from the distribution F is just brev.

3. A Constant-Factor Approximation via a Random Free Set
We begin with the case of pairwise complementarities and show a 12-approximation for this setting.

Recall that the two standard mechanisms considered in previous work are selling the grand

bundle and selling each item separately. Selling the grand bundle only gets better with complements,

since we are certain that the buyer will receive all possible boosts, and we can price accordingly.

3
We do not formally define IC constraints since we can bypass it due to Lemma 3.4, but our mechanisms will be clearly IC.
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It is selling the items separately that is problematic. A conservative way to set the prices while

selling separately is to ignore the complementarities, and sell them as if they are just additive;

this could clearly be quite suboptimal. We can price an item more aggressively in order to capture

some of the boost from complementarities, but this will decrease its probability of sale, which can

further decrease the probabilities of sale for other items that receive a boost from this item. The

pricing must get the right tradeoff between capturing more of the boost from complementarity

while making sure that sufficient quantity of items are sold in the first place in order for the boosts

to accrue. Overall, it is difficult to characterize the behavior of the buyer, which makes optimizing

the prices extremely challenging.

Our approach is to shift the focus away from optimizing prices. We do this by giving some items

away for free, and then just selling the remaining items individually as if they are additive, but

accounting the boost from the items that are given for free. The free items make sure that sufficient

boosts accrue; the priced items extract the value thus generated. The problem now becomes one

of choosing the set of free items, but in fact we show that a random choice suffices. The analysis

compares the revenue to a seemingly crude upper bound, where every item receives the fullest

boost that an item could possibly receive—the boost on the item if the buyer were to receive all of

the items, that is, the grand bundle.

We now formally describe our mechanism separate/free. For each item i ∈ [m], let r ∗i be the
monopoly reserve for the distribution Fi , i.e.,

r ∗i = arg max

p∈R+
p · (1 − Fi (p)) ,

and let Ri be the revenue of the monopoly reserve for the distribution Fi ,

Ri := r ∗i ·
(
1 − Fi (r

∗
i )

)
.

Mechanism separate/free(F ) : Partition the items into “free items” F and “priced items”
¯F =

[m]r F . The price of a priced item i ∈ ¯F is

pi = ηi (F ) · r ∗i .

The buyer gets all of the items in F for free, that is, they are priced each at 0. We denote by

separate/free(F ) the expected revenue from the mechanism with (potentially random) free set

F , and we overload notation slightly to use separate/free = maxF⊆[m] separate/free(F ).

Theorem 3.1. The better of selling the grand bundle and Mechanism separate/free is a 12-

approximation for ppc valuations:

opt-ppc ≤ 12 max{brev-ppc, separate/free-ppc}.

3.1. Proof of Theorem 3.1
The proof of this theorem is largely along the lines of the analysis described in Section 1.3. We first

relate opt-ppc to the optimal revenue for an instance of additive valuations; where the buyer’s

valuation for each item is inflated as if he receives the boosts from owning every possible item in

addition to this one, even if he receives no additional items. Then, the buyer’s new (much larger)

valuations are additive. We refer to this setting as the fully-boosted additive setting, where we

call the values t multiplied by the full boosts as drawn from the distribution F̂ , even though t is
drawn identically as from F . We show that the revenue from this setting is only larger than from

the proportional complements setting.

Lemma 3.2.

opt-ppc(F ) ≤ opt-additive(F̂ ).
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This is a very loose upper bound and intuitively it should be true: for every type t , the buyer’s
value for every set in the fully-boosted additive setting is only larger than in the proportional

complements setting. However, due to revenue non-monotonicities, the proof requires more care,

and is deferred to Subsection 3.2.

In Appendix A, we prove improve the analysis of the 6-approximation by [Babaioff et al., 2014]

to allow a parameterization in the bound
4
. Then our Theorem A.1 with a = 1 gives that

opt-additive(F̂ ) ≤ 2 srev(F̂ ) + 4 brev(F̂ ).

It is easy to see that the revenue from grand bundling in the complements setting on the

original distribution is the same as the grand bundling in the fully-boosted additive setting, i.e.,

brev-ppc(F ) = brev-additive(F̂ ), as the buyer receives the full boosts in both cases. It now remains

to show that Mechanism separate/free on F is a 4-approximation to srev(F̂ ), despite the fact that
the prices in the fully-boosted additive setting are each inflated by full boost of getting the grand

bundle.

Lemma 3.3.

srev(F̂ ) ≤ 4 separate/free-ppc(F ).

Proof. First, we derive a lower bound on the revenue from Mechanism separate/free for any

partition of the items into free and priced. What revenue do we yield for the partition (F , ¯F )?

Recall that for every item i ∈ ¯F , the price posted is ηi (F ) · r ∗i . The probability that the buyer

purchases item i is at least Pr[ti ≥ r ∗i ] = 1− Fi (r
∗
i ), because the buyer receives the boost ηi (F ) from

all the free items with certainty. If the buyer also purchases other items, it will only increase the

buyer’s value for buying item i , so the probability of purchasing item i can only increase. Hence,

the revenue of mechanism separate/free under this particular partition (F , ¯F ) is at least∑
i ∈ ¯F

ηi (F ) · r ∗i ·
(
1 − Fi (r

∗
i )

)
=

∑
i ∈ ¯F

ηi (F )Ri .

Now we construct a graph and show that the revenue of Mechanism separate/free under any

partition (F , ¯F ) of the items is at least the weight of a corresponding directed cut in the following

graph. Consider the graph with vertices [m] corresponding to them items, where directed edge

(j, i) has weightw j ,i := ηi j · Ri , where Ri is the optimal revenue for selling only item i . The graph
also contains a source node s , where for all items i ∈ [m], the edge (s, i) has weightws ,i = Ri . (This
will account for the coefficient 1 for the base valuation of the item.) The weight of the directed cut

from F + {s} to ¯F is precisely:∑
i<F

∑
j ∈F+{s }

w j ,i =
∑
i ∈ ¯F

©­«1 +
∑
j ∈F

ηi j
ª®¬Ri =

∑
i ∈ ¯F

ηi (F )Ri .

Hence, for any partition of free and priced items (F , ¯F ), the weight of the directed cut from F + {s}
to

¯F gives a lower bound on the revenue yielded by Mechanism separate/free for this partition.

We construct our free set by placing each item independently and uniformly at random into

F or
¯F . The expected weight of the corresponding random cut from F + {s} to ¯F is at least

1

4

∑
i ∈[m] ηi ([m]) · Ri =

1

4
srevη[m]◦t . To see this, observe that for every pair of items (j, i), the cut

gets the weight of ηi jRi from this edge whenever j ∈ F and i < F , which occurs with probability

1

4
. The cut also gets a weight of Ri whenever i ∈ ¯F , which happens with probability

1

2
.

�

4
This analysis also improves the 6-approximation to 5.382. The state of the art coefficient is 5.2 [Ma and Simchi-Levi, 2015],

but our proof uses the [CDW16] framework and is more modular.
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Theorem 3.1 now follows from Lemmas 3.2 and 3.3, and Theorem A.1 with a = 1:

opt-ppc(F ) ≤ opt-additive(F̂ )

≤ 2 srev(F̂ ) + 4 brev(F̂ )

≤ 8 separate/free-ppc(F ) + 4 brev-ppc(F ).

3.2. Proof of the Benchmark
We now prove Lemma 3.2: that the optimal revenue from the proportional complements setting

is bounded by the optimal revenue from the fully-boosted additive setting. Again, while this is

intuitive, revenue non-monotonicities make it unclear how to execute a direct proof. Instead, we use

the machinery from the Lagrangian duality framework of [Cai et al., 2016] to give a “dual-covering”

argument. While the argument is simple and easy-to-see for those familiar with the machinery, the

machinery itself is not easy.

First, we formulate the (primal) optimization problem: maximize revenue subject to incentive-

compatibility, individual rationality, and feasibility. We have Lagrangian dual variables, denoted

by λ, corresponding to each IC constraint, i.e., corresponding to each pair of types (t, t ′). Then
the Lagrangian duality framework states that, via strong duality, optimal revenue is equal to the

optimal dual minimization problem, and upper bounded by any feasible dual.

Of the vast array of works that use the Lagrangian duality framework to achieve an upper bound

for approximation [Brustle et al., 2017, Cai et al., 2016, Cai and Zhao, 2017, Eden et al., 2017a,b, Fu

et al., 2017, Liu and Psomas, 2017], the standard approach used by almost all of them is to select dual

variables for the setting at hand that naturally split the upper bound into terms that can be bounded

by a few simple mechanisms. Then, the bulk of the work remains in bounding the unique terms

with the correct mechanisms. Here, however, it is not even clear how to chose a set of dual variables

that induces a good upper bound due the complementarities across items. We take a different path.

We first create a new proxy additive setting, where buyers’ valuations are fully-boosted. We then

argue that the optimal revenue in our setting is upper bounded by the optimal revenue in the

boosted additive setting. As the buyers’ valuations in the boosted setting “dominate” the original

buyers’ valuations, the claim is intuitively true. However, due to revenue non-monotonicities, this

intuition does not directly translate to a proof. We rely on duality to prove the claim. We show that

the optimal dual in the original setting is at most the optimal dual in the fully-boosted additive

setting, which by strong duality, is equal to the optimal revenue. This step is the only place we use

duality and the rest of the analysis all happen in the primal/mechanism space.

We use ϕi (t) := ti −
1

f (t )
∑

t ′(t
′
i − ti )λ(t

′, t) as the “virtual value function” given by λ. Let f (t)

denote the probability that the type t is realized. (We assume discrete distributions for simplicity

of notation.) We denote the set of feasible allocations by P—this is just the set that allocates at

most one unit of each good. The following lemma is a direct application of Theorem 4.4 of [Cai and

Zhao, 2017] to our setting and gives the optimal revenue in terms of these dual variables.

Lemma 3.4.

opt-mpph = min

λ≥0

max

x ∈P

∑
i

∑
t

f (t)ϕi (t)
∑
S :i ∈S

xS (t)ηi (S).

This lemma allows us to move back and forth between the revenue in the primal space and a

bound in the dual space.

Proof. Theorem 4.4 of [Cai and Zhao, 2017] states that the optimal revenue from a buyer with

type t ∈ T and any valuation v(t, S) for the set S is as follows, where x(t, S) is the primal variable
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for the probability that the buyer receives exactly set S when he reports type t :

opt-v(·, ·) = min

λ≥0

max

x ∈P

∑
t

f (t)Φ(t, S)xS (t)

where

Φ(t, S) = v(t, S) −
1

f (t)

∑
t ′∈T

λ(t ′, t)(v(t ′, S) −v(t, S)).

In our setting, we have that v(t, S) =
∑

i ∈S ηi (S)ti . Thus

Φ(t, S) = v(t, S) −
1

f (t)

∑
t ′∈T

λ(t ′, t)(v(t ′, S) −v(t, S))

=
∑
i ∈S

ηi (S)ti −
1

f (t)

∑
t ′∈T

λ(t ′, t)

(∑
i ∈S

ηi (S)t
′
i −

∑
i ∈S

ηi (S)ti

)
=

∑
i ∈S

ηi (S)

(
ti −

1

f (t)

∑
t ′∈T

λ(t ′, t)
(
t ′i − ti

))
=

∑
i ∈S

ηi (S)ϕi (t)

and the above claim holds.
5
Note that this also applies to the additive setting, where for all i , ηi j = 0

for all j and ηi (S) = 1. �

We first relate opt-ppc to the optimal revenue for an instance of additive valuations; in essence

we just multiply the value ti by ηi ([m]).We set up some notation first. Define η[m] to be the vector

whose ith coordinate is (η[m])i = ηi ([m]), and let η[m] ◦ t be the Hadamard product of the vector

η[m] and the vector t . Let F̂ be the distribution where η[m] ◦ t is drawn identically to t in F = ΠiFi ,

i.e.,
ˆf
(
η[m] ◦ t

)
= f (t). We refer to this setting as the fully-boosted additive setting.

Proof of Lemma 3.2. For each i and allocation rule x , by the monotonicity in (1), the boost from

[m] is larger than that from any set S , i.e., ηi (S) ≤ ηi ([m]). Thus, we have that∑
S :i ∈S

xS (t)ηi (S) ≤ ηi ([m])
∑
S :i ∈S

xS (t) = ηi ([m])πi (t), (2)

where we define πi (t) :=
∑

S :i ∈S xS (t) to be the probability that item i is allocated to a buyer of type
t . We now have the following sequence of equalities and inequalities. The first line uses Lemma 3.4

to move to the dual space. We would like to replace ηi (S) by ηi ([m]) everywhere (using eq. (2)), but

this is not possible since the virtual value function may be negative on some types. Lines 2 and

3 do this by using only non-negative virtual valuations as an upper bound. We use z+ to denote
max{z, 0} for any real number z. In line 4 we can bring back the original (possibly negative) virtual

value function because in order to maximize this quantity, the optimal π must set πi (t) = 0 when

ϕi (t) < 0. Line 5 then moves to the dual space for the fully-boosted additive setting, by suitably

defining the dual variables there. (The exact duals are defined below.) Line 6 uses Lemma 3.4 once

again to come back to the primal, opt-additive(F̂ ).

opt-ppc(F ) = min

λ≥0

max

x ∈P

∑
i

∑
t

f (t)ϕi (t)
∑
S :i ∈S

xS (t)ηi (S) by Lemma 3.4

≤ min

λ≥0

max

x ∈P

∑
i

∑
t

f (t) (ϕi (t))
+

∑
S :i ∈S

xS (t)ηi (S)

5
The theorem from [Cai and Zhao, 2017] also holds for multiple buyers, as does a restatement of Lemma 3.4; we only state

it for a single buyer for simplicity.
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≤ min

λ≥0

max

π

∑
i

∑
t

f (t) (ϕi (t))
+ · ηi ([m])πi (t) by eq. (2)

= min

λ≥0

max

π

∑
i

∑
t

f (t)ϕi (t)ηi ([m])πi (t)

= min

λ≥0

max

π

∑
i

∑
η[m]◦t

ˆf
(
η[m] ◦ t

)
ˆϕi

(
η[m] ◦ t

)
πi

(
η[m] ◦ t

)
by eq. (3)

= opt-additive(F̂ ) by Lemma 3.4.

The equality in line 5 is true because if we set the dual variable
ˆλ(η[m] ◦ t

′,η[m] ◦ t) = λ(t ′, t)

in the fully-boosted additive setting,
ˆλ still corresponds to a feasible dual variable

6
. Therefore, it

induces the following virtual value function:

ˆϕi
(
η[m] ◦ t

)
= ηi ([m]) ◦ ti −

1

ˆf
(
η[m] ◦ t

) ∑
η[m]◦t ′

(
ηi ([m])t ′i − ηi ([m])ti

)
ˆλ
(
η[m] ◦ t

′,η[m] ◦ t
)

= ηi ([m])ti −
1

f (t)

∑
t ′

ηi ([m])
(
t ′i − ti

)
λ(t ′, t)

= ηi ([m])ϕi (t). (3)

�

3.3. XOS Complementarities
For simplicity, our analysis is written for additive boosts. However, the extension to XOS boosts is

fairly straight-forward. As shown in eq. (1), XOS boosts are also monotone, so the upper bound

from using ηi ([m]) holds. We modify our graph construction from the proof of Lemma 3.3 as

follows. Define ℓ∗i ∈ argmaxℓ∈[K ]

∑
j ∈[m]r{i } η

ℓ
i j ; then ηi ([m]) = 1 +

∑
j ∈[m]r{i } η

ℓ∗i
i j . Then in the

XOS analysis, the directed edge (j, i) has weightw j ,i := η
ℓ∗i
i j · Ri . A cut from {s} ∪ F to

¯F will have

thus have weight ∑
i<F

∑
j ∈F+{s }

w j ,i =
∑
i ∈ ¯F

©­«1 +
∑
j ∈F

η
ℓ∗i
i j
ª®¬Ri ≤

∑
i ∈ ¯F

ηi (F )Ri .

That is, the weight of the cut is a lower bound on the revenue of the mechanism with free set F and

items in
¯F priced accordingly, using the actual ηi (F )’s. Since a uniformly random F guarantees a

cut of weight
1

4

∑
i ηi ([m]) · Ri in expectation, then the expected revenue is again at least as high.

Similarly, in Lemmas 4.2 and 4.3, the same modification of usingwT ,i := η
ℓ∗i
iT on edges (T , i) will

guarantee that the weight of any cut is again a lower bound on the corresponding separate/free

revenue, so our random cut constructions give the same guarantees under XOS boosts as well.

Finally, it is not hard to see that even when the boosts are XOS functions, the revenue of selling

the grand bundle is still the same as the fully-boosted additive brev(F̂ ).

Theorem 3.5. The better of selling the grand bundle and Mechanism separate/free is a 12-

approximation to the optimal revenue for XOS complementarities.

4. Extension to MPPH
In this section, we show how to extend the mechanism and the analysis to the more general

proportional positive hypergraphic (pph) valuation class. Recall that ηiT may be defined for any

6
For readers familiar with CDW16,

ˆλ still corresponds to a flow.
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subset T ∈ [m]r {i}, and that ηi (S) = 1 +
∑
T ⊆S\{i } ηiT . Also recall that k is the directed-positive-

rank of the hypergraph, and d is the maximum-out-degree. The extensions to the boosts being a

maximum over many hypergraphs (mpph) is covered in our analysis in Section 3.3.

The distribution for the fully-boosted additive setting F̂ is defined as before, except with ηi ([m])

defined according to the pph valuations.

Lemma 4.1 states that the fully-boosted additive setting is again a crude upper bound on revenue;

it is the analog of Lemma 3.2 for pph valuations and can be proven similarly.

Lemma 4.1.

opt-pph(F ) ≤ opt-additive(F̂ ).

Next, we prove an analog of Lemma 3.3 which shows that we can obtain a 4k-approximation to

srev(F̂ ).

Lemma 4.2.

srev(F̂ ) ≤ 4k separate/free-pph(F ).

Proof. We use a random construction of the free set, and we show that the expected revenue of

our mechanism is at least a 1/4k-fraction of srev(F̂ ). Each item independently is free (in F ) with

probability (1− 1

2k ), and otherwise it is priced. By definition of the directed-positive-rank, for every

given ηiT , |T | ≤ k . Then for any suchT , all items inT appear simultaneously in F with probability

(1 − 1

2k )
|T | ≥ (1 −

1/2

k )k ≥ 1

2
. In addition, every item i ∈ ¯F with probability

1

2k .

Consider the graph construction where a directed edge (T , i) has weight wT ,i := ηiT · Ri and
we have an edge (s, i) for every item i with weight ws ,i := Ri . Every edge is cut from {s} ∪ F

to
¯F with probability ≥ 1

2
· 1

2k =
1

4k . The expected weight of the cut from {s} ∪ F to
¯F is then

≥ 1

4k
∑

i ηi ([m]) · Ri =
1

4k · srev(F̂ ).
Again, as in the proof of Lemma 3.3, we observe that the expected revenue of Mechanism

separate/free with partition (F , ¯F ) achieves at least as much revenue as the directed cut from

{s} + F to
¯F , and thus the mechanism obtains the

1

4k -approximation. �

We prove in the next Lemma that there is a different way to choose the free set to obtain a

4d-approximation to srev(F̂ ).

Lemma 4.3.

srev(F̂ ) ≤ 4d separate/free-pph(F ).

Proof. When the hypergraph has maximum-out-degree d , that is, d is the largest number of

edges directed out of any item, a slightly different random construction of the free set gives a

4d-approximation to srev(F̂ ). For each hyperedge (T , i), with probability
1

2d , we place all items

j ∈ T into the free set. We run this process for every hyperedge (in some arbitrary order). If, after

this process, an item j is not assigned to the free set, then item j is priced (placed into
¯F ). For any

item i , the item is priced when none of the (at most d) edges that are directed from a set which

contains i are placed into the free set, which occurs with probability at least (1 − 1

2d )
d ≥ 1

2
. The

probability of i being free is of course at least 1

2d .

Then any edge (T , i) crosses the cut from {s}+F to
¯F with probability at least

1

2d · 1

2
= 1

4d . Then

by the same analysis as in the proof of Lemma 4.2, the expected weight of the cut from {s} + F

to
¯F is at least

1

4d
∑

i ηi ([m]) · Ri =
1

4d · srev(F̂ ), which is again a lower bound on the expected

revenue of Mechanism separate/free with partition (F , ¯F ). �

Together, this gives

opt-pph ≤ opt(F̂ ) ≤ 2 srev(F̂ ) + 4 brev(F̂ ) Lemma 4.1 and Theorem A.1
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≤ 8 min{k,d} separate/free-pph + 4 brev-pph. Lemmas 4.2 and 4.3

Theorem 4.4. The better of selling the grand bundle and Mechanism separate/free for pph valua-

tions, with directed-positive-rank k and maximum-out-degree d , is an (8 min{d,k}+4)-approximation

to the optimal revenue.

The analysis in Section 3.3 generalizes the guarantees to mpph (from additive to XOS boosts).

4.1. Lower Bound of O
(

1

k OPT(F̂ )
)

In our analysis, we make two relaxations. First, we relax our benchmark from opt-mpph to the

upper bound of opt(F̂ ). Second, we lower bound the revenue of our separate/free mechanism by

undercounting the probabilities of sale.

It is extremely difficult to reason about the probability that a buyer will be interested in buying

an item (or a set of items): her value may only be high enough if she buys multiple bundles

simultaneously, or she may purchase a bundle even though her value for it is low because it

improves her value for other bundles. Instead, we undercount this probability in the following

manner: when the buyer is deciding whether to take a priced bundle of items B, we suppose that
she only counts the boosts between items within that bundle B and the boost from the free items

in F . We refer to this lower bound on revenue as the proxy revenue.

In this section, we show that with respect to these two relaxations, for a reasonable class of

simple mechanisms which includes ours, there exists an instance such that the proxy revenue of

every mechanism from the class is a factor of k off from opt(F̂ ). Note that this does not imply

that the proxy revenue of these mechanisms is far from opt-mpph, as we do not know how far

opt-mpph is from the benchmark of opt(F̂ ); we also do not know how far the proxy revenue may

be from the actual revenue.

Definition 4.1. A mechanism is from the class of Bundle Pricing Mechanisms B if it computes

prices as follows. The mechanism determines a partition of items intoy priced bundles of size n1, . . . ,ny
and one free set F . The jth bundle Bj is priced at its monopoly reserve when counting (1) the boosts of

the complementarities within the bundle and (2) the boosts to the items in Bj from the free set F .

Theorem 4.5. Among Bundle Pricing Mechanisms B, no mechanism has proxy revenue better than

O
(

1

k opt(F̂ )
)
, and separate/free with a random free set F achieves this.

Proof. Consider the following instance. There arem items, and the buyer’s type for item i ∈ [m]

is

ti =

{
2
i

w.p. 2
−i

0 otherwise.

For every size-k setT ∈
([m]

[k ]

)
, for all items i < T , we have that ηiT = c := m

2(m−1

k )
. That is, the market

structure is the directed complete graph of hyperedges of size exactly k . Any other hyperedge (T , i)
where |T | , k has weight ηiT = 0. In total, there are

(m−1

k

)
edges of weight

m
2(m−1

k )
into each item i ,

thus ηi ([m]) = 1 + m
2
.

Under these valuations and market parameters, for the random free set construction described

in the previous section (pricing any item with probability
1

2k ), we get proxy revenue at least

(1 + m
2
)m 1

4k =
m+m2/2

4k .

We now show that the proxy revenue of every mechanism from B isO(m
2

k ), and is thus no better

than a constant factor times the proxy revenue of our mechanism.
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Lemma 4.6. In the above construction, for every bundle of n items and a free set F of size |F | = w
items, the proxy revenue of the bundle is O

( ( (n
k

)
+

(w
k

) )
· c

)
, where c = m

2(m−1

k )
.

Proof. We count the boosts that are incorporated into the proxy revenue for any item: from

within its bundle, and from the free set. First, for any item i within some bundle B of size n, the
boosts from within the bundle are exactly

∑
T ⊆Br{i }: |T |=k ηiT =

(n−1

k

)
· c . Then, the boosts that i

gets from the free set are

∑
T ⊆F: |T |=k ηiT =

(w
k

)
· c . Together, i’s boosts accounted for in the proxy

revenue are

η(B + F ) := ηi (B + F ) =

((
n − 1

k

)
+

(
w

k

))
· c .

We now show that for any bundle B of n items, the proxy revenue is at most 4 · η(B + F ).

According to the waywe undercount probability for the proxy revenue, for any ℓ, the (undercounted)
probability that the buyer’s value for bundle B is greater than η(B + F )2ℓ is at most the probability

that he has value at least 2
ℓ
in base valuations, which is

∑m
i=ℓ 2

−i ≤ 1/2
ℓ−1

.

Therefore, for any price for this bundle pB ∈ [η(B + F )2ℓ,η(B + F )2(ℓ+1)], the expected proxy

revenue for this bundle is no more than η(B + F )2(ℓ+1) · 2
−(ℓ−1) = 4 · η(B + F ). �

(1) The proxy revenue for selling separately ism. This is the proxy revenue earned from optimally

selling them items separately, without giving any item out for free. Posting a price of 2
i
for

each item i earns expected proxy revenue 1 for each of them items.

(2) brev ≤ 2m, by the proof of Lemma 4.6 when n =m andw = 0.

(3) For any mechanismM ∈ B, the proxy revenue ofM-pph is no more thanO(m2/k). Consider
the mechanism that offers a free set of size w to the buyer, and then splits the remaining

m −w items into y bundles where the jth bundle is of size nj . According to Lemma 4.6, the

mechanism’s proxy revenue is

O

(((
w

k

)
· y +

y∑
j=1

(
nj
k

))
· c

)
.

Clearly,

∑y
j=1

(nj
k

)
≤

(∑y
j=1

nj
k

)
=

(m−w
k

)
. By definition of c , O

( (m−w
k

)
· c

)
= O(m).

Next, we bound

(w
k

)
· y by

wk

k !
· (m −w). Then, by the AM-GM inequality,

wk · (m −w) =
(w
k

)k
· (m −w) · kk ≤

( m

k + 1

)k+1

· kk = O

(
m(k+1)

k + 1

)
.

Combining everything, we have that

c ·

(
w

k

)
· y ≤ O

(
c

k!

·
m(k+1)

k + 1

)
= O

(
m2

k

)
,

where again the definition of c kills the factor of mk

k !
.

�

5. A common generalization
As observed earlier, our model captures scenarios where the additional value from a combination of

items depends on the base values for the items, whereas the common ph model captures scenarios

where this is independent. We now present a common generalization of these two models. Consider
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the hypergraphic representation of a valuation function, i.e., where the valuation function is

represented by

v(S) =
∑
T ⊆S

vT

for some values vT ; the T for which vT > 0 are the hyperedges of the underlying hypergraph. Our

model can be thought of as a special case where vT is a linear combination of the base values for

the items in T :

vT =
∑
i ∈T

ηiTvi .

More generally, one could have an arbitrary linear transformation from the type space to the

hypergraphic representation: let t = (t1, t2, . . . , td ) be the type, for some dimension d , and

vT =
∑
i ∈[d ]

ηiT ti .

An interpretation of this model is that, for each i ∈ [d], ti represents the buyer’s value for some

activity, and ηiT is the additional boost for that activity made possible by the buyer owning the

combination of items in T . Assume that each ti is independent of the others. This generalizes the
ph model with independent vT s: each hyperedge corresponds to a different activity, and is boosted

only by itself. The model can be further extended to XOS boosts, i.e., a maximum of many linear

combinations (as in mph). We now give an example where such a model is useful.

Example 3: Consider a computing device such as a tablet, which has multiple uses, such as

browsing the web, and taking notes. A buyer’s valuation for such a device can be modeled as a

linear combination of his value for each of the activities it enables. Now consider an accessory

such as a stylus. This makes some of the activities faster, such as taking notes. The additional

value it provides can be modeled as a linear combination of values for the corresponding activities.

Similarly a note-taking app also makes the note-taking activity more valuable. Moreover, it could

be that a combination of a stylus and a compatible app has further added boost to the valuation for

that activity.

This perspective is similar in spirit to the ‘subadditive with independent items’ model of [Rubin-

stein and Weinberg, 2015]. The types (t1, t2, . . . , tm) are drawn from a product distribution ofm
spaces, one for each item; the space corresponding to each item itself can be multi-dimensional.

The valuation function for a set v(S) can be an arbitrary function that depends only on ti for i ∈ S ,
subject to subadditivity.

What is the point of a model even more general than ph when we have seemingly strong lower

bounds for ph? These lower bounds are for max{srev, brev}, which are (by now) the standard

pricing mechanisms for which upper bounds have been shown. While it makes sense to consider the

simplest of the pricing schemes when it comes to upper bounds, lower bounds against such utterly

simple pricing schemes are much less compelling. When it comes to items that are complements,

where such pricing schemes may not be the most natural, such lower bounds are more of an

indication that we need to study alternate pricing schemes, rather than a sign of hopelessness.

A take away from our results is that suitably simple pricing schemes could give constant factor

approximations for reasonably general valuation models with complements. It is too early to discard

the hope for such results for ph and other generalizations.

References
Ittai Abraham, Moshe Babaioff, Shaddin Dughmi, and Tim Roughgarden. 2012. Combinatorial auctions with restricted

complements. In Proceedings of the 13th ACM Conference on Electronic Commerce. ACM, 3–16.



Submission 42 17

Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S Matthew Weinberg. 2014. A simple and approximately optimal

mechanism for an additive buyer. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on. IEEE,

21–30.

Johannes Brustle, Yang Cai, Fa Wu, and Mingfei Zhao. 2017. Approximating Gains from Trade in Two-sided Markets via

Simple Mechanisms. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, Cambridge, MA,

USA, June 26-30, 2017. 589–590. https://doi.org/10.1145/3033274.3085148

Yang Cai, Nikhil R Devanur, and S Matthew Weinberg. 2016. A duality based unified approach to Bayesian mechanism

design. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 926–939.

Yang Cai and Mingfei Zhao. 2017. Simple Mechanisms for Subadditive Buyers via Duality. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017). ACM, New York, NY, USA, 170–183. https:

//doi.org/10.1145/3055399.3055465

Shuchi Chawla, Jason D Hartline, and Robert Kleinberg. 2007. Algorithmic pricing via virtual valuations. In Proceedings of

the 8th ACM conference on Electronic commerce. ACM, 243–251.

Shuchi Chawla, Jason D Hartline, David L Malec, and Balasubramanian Sivan. 2010. Multi-parameter mechanism design

and sequential posted pricing. In Proceedings of the forty-second ACM symposium on Theory of computing. ACM, 311–320.

Shuchi Chawla and J. Benjamin Miller. 2016. Mechanism Design for Subadditive Agents via an Ex Ante Relaxation. In

Proceedings of the 2016 ACM Conference on Economics and Computation (EC ’16). ACM, New York, NY, USA, 579–596.

https://doi.org/10.1145/2940716.2940756

Alon Eden, Michal Feldman, Ophir Friedler, Inbal Talgam-Cohen, and S. Matthew Weinberg. 2017a. The Competition

Complexity Auctions: A Bulow-Klemperer Result for Multi-Dimensional Bidders. Proceedings of the Eighteenth ACM

Conference on Economics and Computation, EC ’17 (2017).

Alon Eden, Michal Feldman, Ophir Friedler, Inbal Talgam-Cohen, and S. Matthew Weinberg. 2017b. A Simple and Approx-

imately Optimal Mechanism for a Buyer with Complements: Abstract. In Proceedings of the 2017 ACM Conference on

Economics and Computation (EC ’17). ACM, New York, NY, USA, 323–323. https://doi.org/10.1145/3033274.3085116

Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, and Vasilis Syrgkanis. 2015. A Unifying Hierarchy

of Valuations with Complements and Substitutes. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

Michal Feldman, Nick Gravin, and Brendan Lucier. 2015. Combinatorial auctions via posted prices. In Proceedings of the

Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 123–135.

Hu Fu, Chris Liaw, Pinyan Lu, and Zhihao Gavin Tang. 2017. The Value of Information Concealment. arXiv preprint

arXiv:1707.05875 (2017).

S. Hart and P.J. Reny. 2012. Maximal revenue with multiple goods: Nonmonotonicity and other observations.

Siqi Liu and Christos-Alexandros Psomas. 2017. On the Competition Complexity of Dynamic Mechanism Design On the

Competition Complexity of Dynamic Mechanism Design On the Competition Complexity of Dynamic Mechanism

Design On the Competition Complexity of Dynamic Mechanism Design. arXiv preprint arXiv:1709.07955 (2017).

Will Ma and David Simchi-Levi. 2015. Reaping the benefits of bundling under high production costs. arXiv preprint

arXiv:1512.02300 (2015).

Aviad Rubinstein and S Matthew Weinberg. 2015. Simple mechanisms for a subadditive buyer and applications to revenue

monotonicity. In Proceedings of the Sixteenth ACM Conference on Economics and Computation. ACM, 377–394.

Andrew Chi-Chih Yao. 2015. An n-to-1 bidder reduction for multi-item auctions and its applications. In Proceedings of the

Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 92–109.

https://doi.org/10.1145/3033274.3085148
https://doi.org/10.1145/3055399.3055465
https://doi.org/10.1145/3055399.3055465
https://doi.org/10.1145/2940716.2940756
https://doi.org/10.1145/3033274.3085116


Submission 42 18

A. Improved Additive Bound
We now give a proof which improves the 6-approximation by [Babaioff et al., 2014] to 5.382.

Theorem A.1. For any a > 0,

opt ≤

(
2 +

2

a2

)
· brev + (a + 1) · srev.

In particular, if we choose a = 3

√
4, then

opt ≤

(
3 +

3

2

3

√
4

)
· max{srev, brev} ≤ 5.382 · max{srev, brev}.

Proof of Theorem A.1. We improve the analysis used in [Cai et al., 2016], where they obtain

an upper bound on opt using duality. They further partition the upper bound into three parts:

opt ≤ single + tail + core.

The first term Single is upper bounded by srev. The second term tail is also upper bounded by

srev, but the first thing we show is that it can also be upper bounded by brev.

Let item j’s value tj be drawn from Fj independently, and fj (vj ) be the probability that tj = vj .
Following the notation of [Cai et al., 2016], we use R to denote srev, and tail is defined as follows.

tail =
∑
j ∈[m]

∑
tj>R

fj (tj ) · tj · Prt−j∼F−j [∃ℓ , j, tℓ ≥ tj ].

This quantity is the expected value above r from all but the highest item. Note that for any j and
any tj , selling the grand bundle at a price of tj earns revenue at least tj · Prt−j∼F−j [∃ℓ , j, tℓ ≥ tj ].
Hence,

tail ≤ brev ·
©­«
∑
j ∈[m]

∑
tj>R

fj (tj )
ª®¬ ≤ brev.

The second inequality is becauseR j is the optimal revenue for selling only item j , andR j ≥ R ·Pr[tj ≥
R], thus

∑
tj>R fj (tj ) ≤ R j/R; also, R =

∑
j R j .

Next, we improve the analysis of the term core. In [Cai et al., 2016], core is upper bounded by

2brev +2srev. They make use of Chebyshev’s inequality to obtain this bound. We improve their

analysis using a tighter inequality due to Cantelli.

The core is defined as follows.

core =
∑
j ∈[m]

∑
tj ≤R

fj (tj ) · tj = Et∼F


∑
j ∈[m]

tj · 1[tj ≤ R]


It is shown in [Cai et al., 2016] that Vart∼F

[∑
j ∈[m] tj · 1[tj ≤ R]

]
≤ 2R2

. Now we state Cantelli’s

inequality:

Theorem A.2 (Cantelli’s Ineqality). For any real valued random variable X and any positive

number τ ,

Pr [X ≥ E[X ] − τ ] ≥
τ 2

τ 2 + Var[X ]
.

We define the random variable V =
∑

j ∈[m] tj · 1[tj ≤ R] and apply Cantelli’s inequality to V
with τ = aR.

Pr[V ≥ core − aR] ≥
a2R2

Var[V ] + a2R2
≥

a2

2 + a2
.
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The last inequality is because Var[V ] ≤ 2R2
. Therefore, brev ≥ (core − aR) · a2

2+a2
, which implies

core ≤ (1+ 2

a2
) · brev+a · srev. Combining our new analysis for the tail and the core, we obtain

the new bound. �
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