Introduction

A double auction mechanism that provides dominant strategies for both buyers and sellers enables the market to allocate goods and services efficiently. The mechanism is designed to overcome the limitations of traditional auction formats. Proposed in the early 1970s by economists like John McMillan, the double auction mechanism has been widely adopted in various economic contexts, including financial markets, commodities, and services.

The mechanism functions by allowing buyers and sellers to simultaneously bid and ask prices, creating a market where the matching of bids and asks results in transactions. This process leads to the efficient allocation of goods and services, as the mechanism ensures that the market clearing price reflects the true valuation of buyers and sellers.

In a double auction, both buyers and sellers can submit bids and ask prices independently. The market matches the highest bid with the lowest ask, creating transactions at the market clearing price. This process is repeated continuously, allowing the market to clear at the equilibrium price and quantity.

The double auction mechanism is particularly useful in markets where there are many buyers and sellers, and where transactions take place frequently. By providing a platform where multiple buyers and sellers can interact simultaneously, the double auction mechanism facilitates efficient market outcomes.

The double auction mechanism is a cornerstone of modern economic theory and practice, playing a critical role in the functioning of financial markets, commodity exchanges, and service markets. Its ability to provide efficient outcomes while accommodating the diverse preferences and strategies of market participants makes it a robust and widely applicable mechanism.
The results of Figure 2 show that different allocation, dominant strategies, and payoffs are consistent with the mechanism for a more general valuation. In particular, suppose the distribution of valuations is such that the mechanism is tractable, and

One important feature of the mechanism is that it can be specified, and that a mechanism can be designed without the additional agent, who does not otherwise operate without the additional agent. Moreover, however, the mechanism is not designed to operate without the additional agent. The assumption that a market maker exists for a budget planner or market maker defines an additional, non-monotonic agent who is in part a social welfare. Thus, unlike the mechanism of all-stations and "flipping the coin" methods, the mechanism can be used to ensure that the market maker is called as a producer of money, but otherwise determines the pricing of goods and pays sellers. This is because the agents involved in the market are assumed to have different roles and abilities. In this paper, it is assumed that the market maker has control over the agents involved in the market, and that the market maker determines the pricing of goods and pays sellers. Thus, sellers bring trade with the - 1 lowest cost sellers, with buyers paying and sellers being paid with buyers paying + γ or the highest value of γ (satisfying $q > 1 + \gamma > 1 + \gamma$). Let the - 1 highest value of γ, which the sellers report, correspond to the highest value of γ, and find the equilibrium price. If it is close, they report their valuations; if not, they report their valuations. The mechanism can be illustrated with a simple mechanism that is discussed in Section 4.

Exchange implies a market mechanism who makes money. The mechanism is derived from the New York Stock Exchange, dominant strategies, and monetary trade on the New York Stock Exchange. Moreover, to derive dominant strategies, one needs to specify the market maker. This appears to be necessary to derive dominant strategies. However, it does not need money, although it needs money. This means that once a social welfare mechanism is specified, the result of the mechanism is that a market maker is defined. The mechanism is illustrated in Figure 2.

One undesirable aspect of the mechanism is that it is a mechanism that is defined for double auctions, only independent of independent values in other studies. If dependent values would be resolved in different exchanges, as in other studies possible different trades, the result is that the lowest value of all is not treated as different trades, and this trade is limited to the loss of the mechanism. Thus, defined by the mechanism. First, both buyers and sellers have dominant strategies. In contrast to other studies, the experiment examines a mechanism of the buyers' bid double auction to eliminate strategic behavior on the part of the seller, and thereby simplify the analysis.
agrees with dominant strategies play their dominant strategy.
are other equilibria discussed in Remark 1. I follow experiment and Williams and assume
To be precise, no unprofitable moves when players play their dominant strategies. These
I thank an anonymous referee for pointing this out.

utility: \(d - q \) a player paying nothing and not receiving the good obtains.
A player with value \(w \) pays and receives a unit of the good obtains.
has a privately observed value \(q \) for a single unit of the good, and each seller /
privately observes value \(q \) for a single unit of the good, and each seller /

There are \(m \) buyers and \(n \) sellers in the market. Each buyer i has a

THE DIRECT IMPLEMENTATION

which a condition is offered. The condition describes and analyzes the real dominant strategy double auction. After
describes and analyzes the real dominant strategy. The fourth section
thirty section demonstrates the convergence result. The fourth section
implementation of the real double auction with dominant strategies. The
describes the environment and analyzes the direct

It can be concluded that this is true of the mechanism which maximizes each
and Williams does not arise. The present study shows that the expected
problems in game theory and the issue considered by Stigler at
revenue occurs in equilibrium, and the issue considered by Stigler at
expected revenue occurs in equilibrium, and the issue considered by Stigler at

Experiments we will need

The mechanism I present has a natural oral implementation that is

D. PERSSON, MCCE.
436
In the case of two, let's $q = \frac{(1 + r) q}{(1 + r + q) s}$.

We are now in a position to derive the mechanism. The mechanism
where q is the efficient number of trades, satisfying inequalities (5) and (6).

\[(7) \quad q \leq \frac{(1 + r) s + (1 + r + q) q}{s} = \frac{q}{d}\]

Finally, define

supplies. Finally, define

where the mechanism dictates that trade occurs if it produces exactly zero

\[(6) \quad (1 + r) s > (1 + r + q) q\]

and

\[(5) \quad (r) s \leq (q) q\]

is the number of trades satisfying \(u \leq \min \{ w, u \} \) is the highest possible cost, \(u \) is the efficient number of trades.

That is, the fictitious order statistic that is the lowest possible value and

\[(4) \quad \{ 1 = (q) J : s \} \text{ int } = (1 + r) s\]

\[(3) \quad \{ 0 = (q) J : q \} \text{ dom } = (1 + r + q) q\]

I follow the convention

notion of (1) for the highest, lowest valuation buyer or the lowest cost seller.

Note the reverse ordering for buyers and sellers. We shall use the

\[(2) \quad (u) s \leq \ldots \leq (2) s \leq (1) s\]

and

\[(1) \quad (u) q \leq \ldots \leq (2) q \leq (1) q\]

Define the order statistics:

Let \(q \) be the buyers' reports and \(s \) be the sellers' reports.

Knowledgeable reports' agents know their own valuation, and the mechanism is common
knowledgeable reports. Agents know their own valuation, and the mechanism is common
knowledgeable reports. Agents report their valuations in the mechanism, which

mechanism. Agents report their valuations in the mechanism, which

The direct implementation of the dominant strategy auction is a direct

utility function, up to the private valuations, are common knowledge.

knowledgeable agents. No trade takes place, and players are not penalized for risk, and the

mechanism. Agents report their valuations in the mechanism, which

\(q \) and receiving payment obtains utility \(q \) and receives payment obtains value at zero utility. Similarly, a seller who gives up her until the good valued at

a dominant strategy double auction.

437
Theorem 1: Honesty is a dominant strategy for the direct implementation of the common strategy auction.

The theorem states that in the context of a common strategy auction, participants truthfully report their valuations, which is a dominant strategy. This result is significant because it implies that the auction design itself can encourage honesty among participants, which is a desirable property in many economic settings.

The proof of the theorem involves analyzing the incentives of participants and demonstrating that misreporting valuations would not yield a better outcome for the participant. The theorem is a fundamental result in the theory of auctions and mechanism design.
Remark 2. The dominant strategies are unaffected by increasing concave transformations of utility.

Valuation lead to losses or lost profits in some realizations. Hence, the only efficient strategy, for reports other than one's own, is to report
\[(1) q \leq 0 \]
Thus, a unilateral deviation by a buyer will not permit that

\[0 \hat{d} = (2) q + (2) s \hat{t} \leq H \hat{t} < T \leq (1) s \]

See this, note that.

Even if sellers follow their dominant strategies, there may remain gains.

Report very low values.

Sellos are exposed, and sellers will report higher values, given that buyers are not yet played, because buyers can report anything given that was the first case considered. Thus, there are equilibria where dominant knowledge and sellers' knowledge intersect. In the case where \[T = 0 \], which is also possible, both the maximum possible buyers' value and the lowest possible value, and the lowest possible value, and the highest possible buyer's report the maximum, and the lowest possible value, and the highest possible buyer's report the maximum. There are also variations of this equilibrium, as least in the full information.

Thus, no equilibrium is not a unique equilibrium. Assuming all values.

Remark 1. Hence, is not a unique equilibrium. Assuming all values.

A buyer at or below the price of the seller, or similar.
Important to the argument that f and G have the integral interal as support.

The restriction of support to $[0,1]$ generalizes to any compact interval. However, if q are drawn from G, and these are all drawn from f, then q are not contd. and remain at all n.

Thus, calculating the higher order statistics becomes more likely, is not met, and is not met. Moreover, if $q < (1+\epsilon)q$, then q is not met.

The order statistics that are not met by additional realizations very rapidly appear in the order statistics as $n \to \infty$. If the density approximations given may appear in α, then so be it.

Intuitively, the use of (6) and (8) is to focus the order statistics to be of

(6) $0 < \{1 \geq x \geq 0 : (x)^8 \}$

(8) $0 < \{1 \geq x \geq 0 : (x)^f \}$

In are bounded above zero. I have assumed that

in are bounded above zero, and f is. By assumption, the densties of distributions f and G are bounded above zero over $[0,1]$. Suppose distributions f and G are drawn from a family of distributions with support $[0,1]$. Let \mathcal{F} be a random amount of generality is available at low overhead cost.

Because different strategies are independent of the distribution, a buffer and table, provided that the elements are bounded away from zero, w is the minimum of the number of u and w, where w is the number of $u \vee w$ or w is the number of $u \vee w$.

The statement and Williams results do not directly provide information.

The statement and Williams results do not directly provide information.

The rate of convergence to efficiency

R. Preston McAfee
THEOREM 3.

\[(1 + u)\gamma / (1 + w) \phi / I \geq \gamma I\]

with a simple expression.

Lemma 2 allows a direct proof of the rate of convergence to efficiency.

\[
(x)f_{1-i}((x)\gamma D - 1)y_{1-w}(x)H_{-u}((x)\gamma D - 1) \left(\frac{t}{u} \right) \left(\frac{1}{u} \right) \sum_{u \vee u} + \leq \gamma I
\]

\[
(x)f_{1-i}((x)\gamma D - 1)y_{1-w}(x)H_{-u}((x)\gamma D - 1) \left(\frac{t}{u} \right) \left(\frac{1}{u} \right) \sum_{u \vee u} \geq \gamma I
\]

Lemma 2.

(6) and the appendix. It does not depend on (g) and the following lemma has a straightforward, price-force proof localized in

\[
\begin{vmatrix}
\left(\gamma \right) \frac{t}{(\gamma) s} \\
\left(\gamma \right) \frac{q}{(\gamma) s}
\end{vmatrix}
\]

\[
\begin{vmatrix}
\left(\gamma \right) \frac{t}{(\gamma) s} \\
\left(\gamma \right) \frac{q}{(\gamma) s}
\end{vmatrix}
\]

The number of buyers willing to pay the price is

\[
\left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I
\]

The number of buyers willing to pay the price is

\[
\left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I
\]

\[
\left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I
\]

\[
\left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I \left((d)_{u} D - 1 \right) w = \gamma I
\]
as the partition is refined, we have
≈ will signify an approximation that is approximately good, becoming equal.

Let \(1 = x > \cdots > x > 0 \) be a partition of \([0,1] \).
The symbol \(\cdot \) denotes nonincreasing in \(x \) and increasing in \(u, 0 \leq u < 1 \).
Note that \((x)^\cdot = ((x)^\cdot)^\cdot \).

For \(0 \leq u < 1 \) and \((x)^\cdot = (x)^\cdot \), define \((x)^\cdot = (x)^\cdot \).

Define

\[
\dot{\gamma}p(\dot{\lambda}) = \left(\begin{array}{c} 1 - \frac{1}{u} \\ 1 - \frac{1}{u} + \frac{1}{u} \end{array} \right) \int \left(\begin{array}{c} 1 - \frac{1}{u} \\ 1 - \frac{1}{u} + \frac{1}{u} \end{array} \right) = (x)^\cdot \]

Consider the first term in (11) the second is symmetric. For \((x)^\cdot \)

\[
(11) \quad xp(\dot{\lambda}) = \int \left(\begin{array}{c} 1 - \frac{1}{u} \\ 1 - \frac{1}{u} + \frac{1}{u} \end{array} \right) \int \left(\begin{array}{c} 1 - \frac{1}{u} \\ 1 - \frac{1}{u} + \frac{1}{u} \end{array} \right)
\]

This yields from Lemma 2,\n
\[
\int \left(\begin{array}{c} 1 + \frac{1}{u} \\ 1 + \frac{1}{u} \end{array} \right) \int \left(\begin{array}{c} 1 + \frac{1}{u} \\ 1 + \frac{1}{u} \end{array} \right)
\]

Similarly,\n
\[
(01) \quad \int \left(\begin{array}{c} 1 + \frac{1}{u} \\ 1 + \frac{1}{u} \end{array} \right) \int \left(\begin{array}{c} 1 + \frac{1}{u} \\ 1 + \frac{1}{u} \end{array} \right)
\]

Proof. Note that

R. Preston McAfee
The second line in (11) is symmetric

\[\begin{align*}
\sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) & \left(\frac{I + f^w}{1 + u} \right) (f^w x) I \sum_{u} \frac{1 - f^w}{1 + u} \\
\sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) & \left(\frac{I + f^w}{1 + u} \right) (f^w x) I \sum_{u} \frac{1 - f^w}{1 + u}
\end{align*} \]

increasing in this yields

Since is non-

\[\begin{align*}
\sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) & \left(\frac{I + f^w}{1 + u} \right) - \\
\sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) \left(\frac{I + f^w}{1 + u} \right) (f^w x) I \sum_{u} \frac{1 - f^w}{1 + u} \\
(f^w x) I & \sum_{w} \frac{1 - f^w}{1 + u} (1 + u) \sum_{w} \frac{1 - f^w}{1 + u}
\end{align*} \]

\[\begin{align*}
\left[(1 - f^w x) I - (f^w x) I \right] & \sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) \times \\
\left[(1 - f^w x) I - (f^w x) I \right] & \sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) \times \\
(f^w x) I & \sum_{w} \frac{1 - f^w}{1 + u} (1 + u) \sum_{w} \frac{1 - f^w}{1 + u}
\end{align*} \]

\[\begin{align*}
\left[(1 - f^w x) I - (f^w x) I \right] & \sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) \times \\
\sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) & \left(\frac{I + f^w}{1 + u} \right) \sum_{w} \frac{1 - f^w}{1 + u} (1 + u) \sum_{w} \frac{1 - f^w}{1 + u}
\end{align*} \]

\[\begin{align*}
\sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) & \left(\frac{I + f^w}{1 + u} \right) (f^w x) I \sum_{u} \frac{1 - f^w}{1 + u} \\
\sum_{w} (1 + f^w x) I_{1+w} ((1 + f^w x) I - 1) & \left(\frac{I + f^w}{1 + u} \right) (f^w x) I \sum_{u} \frac{1 - f^w}{1 + u}
\end{align*} \]
as a function of time, for the \textit{endogenous} value.

I first mention by using the same symbol for the total of initial number and the number

case if is constant
decrease at a unit rate unless there are fewer sellers than buyers, in which
sellers, in which case the bid price is constant. Similarly, asked price
Thus, the bid price rises at a unit rate unless there are fewer buyers than
asked prices are governed by the differential equations:

\[
\begin{align*}
(1) w > (1) u &\iff 0 \rightarrow (1),o \\
(1) w \leq (1) u &\iff 1 \rightarrow (1),d \\
(1) u > (1) w &\iff 0 \rightarrow (1),d \\
(1) u \leq (1) w &\iff 1 \rightarrow (1),d
\end{align*}
\]

For the buyer and seller, respectively:

\[
\begin{align*}
\{1 > (s) o : s \} \exists & = (0)o \\
\{0 > (q) d : q \} \exists & = (0)d
\end{align*}
\]

The most favorable levels:

The bid and asked prices are initially set at
\((u)w = (1)u\), which is unacceptable. If a buyer (seller) becomes inactive at time \(t\),

\[
u = (0)u, \quad w = (0)w
\]

active buyers and sellers, and \((u)w = (1)u\) initially, all buyers and sellers are

The system involves bid and asked prices \((i)w\) and \((i)u\) and the number of

\textit{oral double auction}.

expected efficiency loss per potential trader is at order \(1/l\).

Remark 3: Since there are at least \((2m)\) potential traders, the

R. Preston Matthews
There is not the only equilibrium strategy. If \((i)\) \(\sigma > (i)\) \(\sigma\) a player can forecast that the
strategy auction continues with that of the direct implementation.

Moreover, it ensures that the dominant strategy contribution of the next dominant player from exit will end the game. The equilibrium does not disturb the dominant
and only one player chooses an expansion. This is why nooked: it prevents
and two or more players with exit simulatenously are the-breaking rule is called for.

The strategy difference makes it possible to eliminate the strategic

for any such analogy, private valuations constitute an unreasonable

effect of the NYSE of a clear-cut double auction. Thus, a reasonable

strategic, but the final equilibrium strategy double auction is as reasonable

as the dynamic aspects of the NYSE, the analogy is

Of course, owing to the dynamic aspects of the NYSE, the

The only dominant strategy double auction satisfies the movement o

model of stock valuations.

the auction is not dissimilar to a one-shot auction of

strategic auction described in Section 2 and thereby implicitly all its con-

This auction mimics the direct implementation of the dominant

\[(1 + \gamma)^s \]

and there are \(\gamma \) players left of each type. If

\[(1 + \gamma)^s > (1 + \gamma) q = (1)g \]

This situation prevails until the time \(t \) where

R. Preston McAfee
There are at least two extensions of the double auction environment that are not possible. The second of these is the one that is of interest here, so that a simple rise in price will bring an increase in the price of the product. The development of the efficient equilibrium is more difficult in this environment. The correlation makes it easy to see why it is more likely to remain in the product at all. This is the case with the value of which appears more or less useless. Worse still, the value of which appears more or less useless. Worse still, the value

\[\frac{(q)D(\gamma)D - 1}{(q)D} \frac{f}{u} \sum_{\frac{f}{u}} \frac{f}{u} \]

\[\frac{f}{u} \frac{1}{1-\frac{f}{u}} \frac{1}{1-\frac{f}{u} x \frac{f}{u}} = (q)D \]

particular direction is not more likely. This development of the efficient equilibrium is more difficult in this environment. The correlation makes it easy to see why it is more likely to remain in the product at all. This is the case with the value of which appears more or less useless. Worse still, the value of which appears more or less useless. Worse still, the value

\[\frac{(q)D(\gamma)D - 1}{(q)D} \frac{f}{u} \sum_{\frac{f}{u}} \frac{f}{u} \]

\[\frac{f}{u} \frac{1}{1-\frac{f}{u}} \frac{1}{1-\frac{f}{u} x \frac{f}{u}} = (q)D \]

particular direction is not more likely. This development of the efficient equilibrium is more difficult in this environment. The correlation makes it easy to see why it is more likely to remain in the product at all. This is the case with the value of which appears more or less useless. Worse still, the value of which appears more or less useless. Worse still, the value

\[\frac{(q)D(\gamma)D - 1}{(q)D} \frac{f}{u} \sum_{\frac{f}{u}} \frac{f}{u} \]

\[\frac{f}{u} \frac{1}{1-\frac{f}{u}} \frac{1}{1-\frac{f}{u} x \frac{f}{u}} = (q)D \]

particular direction is not more likely. This development of the efficient equilibrium is more difficult in this environment. The correlation makes it easy to see why it is more likely to remain in the product at all. This is the case with the value of which appears more or less useless. Worse still, the value of which appears more or less useless. Worse still, the value

\[\frac{(q)D(\gamma)D - 1}{(q)D} \frac{f}{u} \sum_{\frac{f}{u}} \frac{f}{u} \]

\[\frac{f}{u} \frac{1}{1-\frac{f}{u}} \frac{1}{1-\frac{f}{u} x \frac{f}{u}} = (q)D \]

particular direction is not more likely. This development of the efficient equilibrium is more difficult in this environment. The correlation makes it easy to see why it is more likely to remain in the product at all. This is the case with the value of which appears more or less useless. Worse still, the value of which appears more or less useless. Worse still, the value

\[\frac{(q)D(\gamma)D - 1}{(q)D} \frac{f}{u} \sum_{\frac{f}{u}} \frac{f}{u} \]

\[\frac{f}{u} \frac{1}{1-\frac{f}{u}} \frac{1}{1-\frac{f}{u} x \frac{f}{u}} = (q)D \]

particular direction is not more likely. This development of the efficient equilibrium is more difficult in this environment. The correlation makes it easy to see why it is more likely to remain in the product at all. This is the case with the value of which appears more or less useless. Worse still, the value of which appears more or less useless. Worse still, the value

\[\frac{(q)D(\gamma)D - 1}{(q)D} \frac{f}{u} \sum_{\frac{f}{u}} \frac{f}{u} \]

\[\frac{f}{u} \frac{1}{1-\frac{f}{u}} \frac{1}{1-\frac{f}{u} x \frac{f}{u}} = (q)D \]
signals.

approach to such problems in the presence of risk neutrality and correlated
interactions. However, McFayden and Reynolds [6] offer a mechanism design
approach that takes into account the potential for the dual auction
mechanism to fail under specific conditions. They argue that the
coincidence of time and price can affect the outcome of the auction,
whereas the simultaneity of price and time can provide information about the
demand for real estate. For example, buyers may provide information about their
preferences and values in an impermissible manner. Thus, the paper

Table 1 presents the results of simulations of the mechanism. Given identical uniform distributions and

<table>
<thead>
<tr>
<th>u</th>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

The results of simulations of the mechanism given identical uniform distributions

TABLE 1

R. PRESTON MCFAYDEN
This completes the proof.

\[\left\{ \{ t \leq q \leq t + \frac{1}{2} \} \cup \{ 0 \leq q < t + \frac{1}{2} \} \right\} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

\[\left\{ \{ t \leq q \leq t \} \cap \{ 0 \leq q < t + \frac{1}{2} \} \right\} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

\[\left\{ \{ t \leq q \leq t + \frac{1}{2} \} \cap \{ 0 \leq q < t + \frac{1}{2} \} \right\} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

Finally,

\[\left\{ \{ t \leq q \leq t + \frac{1}{2} \} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

\[\left\{ \{ t \leq q \leq t + \frac{1}{2} \} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

(Similarly, \{ t \leq q \leq t : \frac{1}{2} \} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

For \(u \geq w = t \), this evaluates to

\[\left\{ \{ t \leq q \leq t + \frac{1}{2} \} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

For \(w > t \),

\[\left\{ \{ t \leq q \leq t + \frac{1}{2} \} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

\[\left\{ \{ t \leq q \leq t + \frac{1}{2} \} \right\} \begin{array}{c} I \left(s - t \right) \end{array} \begin{array}{c} \forall u \cup u \end{array} \begin{array}{c} = 1 \end{array} \]

Appendix

A DOMINANT STRATEGY DOUBLE AUCTION
REFERENCES

R. Preston Mcafee 450