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The Coase conjecture (1972) is the proposition that a durable-goods monopolist, who sells over time
and can quickly reduce prices as sales are made, will price at marginal cost. We show that an arbitrarily
small deviation from Coase’s assumptions—a deviation that applies in almost any practical application—
results in the failure of that conjecture. In particular, we examine that conjecture in a model where there is
a vanishingly small cost for production (or sales) capacity, and the seller may augment capacity in every
period. In the “gap case”, any positive capacity cost ensures that in the limit, as the size of the gap and
the time between sales periods shrink, the monopolist obtains profits identical to those that would prevail
when she could commit ex ante to a fixed capacity. Those profits are at least 29-8% of the full static
monopoly optimum.

1. INTRODUCTION

Nobel laureate Ronald Coase (1972) startled the economics profession with a counterintuitive
proposition, which came to be known as the Coase conjecture, concerning the monopoly seller
of a durable good. Coase’s original example was the hypothetical owner of all land in the U.S.
The monopolist maximizes profits by identifying the monopoly price and selling the quantity as-
sociated with that price. Having sold that quantity, however, the monopolist now faces a residual
demand, and she is induced to try to sell some additional units to the remaining buyers at a price
that is lower than the initial price. Such logic entails a sequence of sales at prices falling towards
marginal cost. Rationally anticipating falling prices causes most potential buyers to wait for fu-
ture lower prices. Provided that the monopolist can make sales and cut price sufficiently rapidly,
Coase conjectured that the monopolist’s initial offer would be approximately marginal cost and
that the monopoly would replicate the competitive outcome.

Intuitively, the monopolist competes with future incarnations of herself. Even when facing
a monopolist, buyers have an alternative supplier: the monopolist in the future. That the power
of such a substitution possibility might render the monopoly perfectly competitive remains a
captivating idea even for an audience accustomed to the fact that subgame perfection (or time
consistency) restricts equilibria in dramatic ways. Arguably, Coase’s conjecture remains the most
extreme example of the power of subgame perfection.

Coase’s intuition is compelling, but its consequence—that a monopolist makes no profit—
is difficult to accept. We offer a way to reconcile this paradox in the form of a countervailing
intuition that Coase did not consider. In almost any real-world application, there is a small cost
of capacity, so that selling a given amount over a shorter span of time costs more. Even Coase’s
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hypothetical seller of all U.S. land, who faces no production cost, still bears a capacity cost:
to sell the land rapidly requires a large number of sales agents, so the seller must incur hiring
and training costs. Whenever there is an increased cost of increased speed, there is an effective
capacity cost. In that case, we show that even if the seller can augment capacity at any time,
she can credibly commit to the same level that she would pick if the choice were once and for
all. By doing so, she earns at least 29-8% of the static monopoly profit, instead of the zero profit
predicted by Coase’s argument.

The first formal proofs of the Coase conjecture are given by Bulow (1982) and Stokey
(1982). The deepest analysis is the challenging paper by Gul, Sonnenschein and Wilson (1986).
This paper distinguishes two cases, the so-called “gap” case, where the lowest value buyer has a
value strictly exceeding marginal cost, and the “no-gap” case, in which demand and marginal cost
intersect. The gap case, which is also studied by Fudenberg, Levine, and Tirole (1985), is more
readily analysed because there is generically a unique subgame perfect equilibrium. Uniqueness
arises because if there are few potential buyers left, it pays to sell to all of them at the lowest will-
ingness to pay (which strictly exceeds marginal cost by hypothesis). This conclusion ties down
the price in the last stage and ensures that the game is of finite length; backwards induction then
gives the unique equilibrium. When the stages occur rapidly, prices converge to the final price
rapidly, so buyers are unwilling to pay much more than the lowest valuation, which implies that
the opening price is the lowest valuation. That result is not quite the same as Coase’s conjecture
because prices converge on the lowest willingness to pay rather than to marginal cost, but it is
similar in spirit.

In contrast, in the “no-gap” case, the Coase conjecture holds in some equilibria, but not
in others. There is a “Coasian” equilibrium that is stationary (at any time, buyers’ strategies
depend only on the current price and not upon the prior history of the game) and entails an
initial price close to marginal cost. Moreover, this opening price converges to marginal cost as
the time between sales periods approaches zero. As Ausubel and Deneckere (1989) demonstrate,
this Coasian equilibrium can be used to ensure the existence of other, non-stationary equilibria by
threatening the seller that, should she deviate from the hypothesized equilibrium, buyers’ beliefs
will revert to the Coasian equilibrium, which involves low profits for the seller. Such a threat
guarantees that the seller would not deviate from anything at least as profitable as the low-profit
Coasian equilibrium, and seller profits anywhere up to the full static monopoly profit can be
obtained in equilibrium.

We focus on the gap case, and show that the Coase conjecture is not robust to the introduc-
tion of endogenous, costly capacity, a modification that would be relevant in nearly all practical
settings. We envision a perfectly durable capacity, so that, once bought, the capacity never needs
to be repurchased. If a monopolist chose production capacity at the beginning of time and could
not augment it later, she would use capacity as a commitment device, setting a low capacity and
dribbling output into the market. That approach has the advantage of ensuring that prices are high
early and fall slowly, as high-value buyers pay more for early acquisition of the good. Indeed, we
will demonstrate that in such a “commitment game”, the monopolist obtains at least 29-8% of the
static monopoly profits, no matter how fast the stages of the game occur; increasing the speed of
the game induces the monopolist to cut capacity in a way that keeps the flow of goods to buyers
constant. Note that the monopolist could not achieve anything higher than static monopoly profits
even if she could commit ex ante to a sequence of prices. Stokey (1979) shows that she would
optimally set the static monopoly price in each period and thus earn static monopoly profits. That
is, the ability to discriminate dynamically does not help the monopolist.

1. A constant marginal cost of selling does not create a capacity cost, but just an ordinary marginal cost. Potential
congestion in sales, so that selling twice as fast incurs more than twice the costs, creates an effective capacity cost.
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While the specificity of the lower bound of profits may be remarkable, the fact that profits
fail to converge to zero is not; such a model endows the seller with an extraordinary commitment
ability—the ability to commit at the beginning of the game to restrict future sales. This seller
does not reach the full static profits because she cannot stop herself from selling to all customers
eventually; when she reaches the monopoly quantity, Coasian logic dictates that she continue to
sell. However, she can slow herself down, selling slowly enough to ensure that she acquires a
significant fraction of the monopoly profits. She loses two ways relative to the static monopoly—
she eventually sells too much and profits are earned slowly and hence discounted, but nevertheless
capacity commitment leads to positive profits.

To add capacity in a more realistic fashion, we consider a monopolist who chooses whether,
and by how much, to augment production capacity in each period of the game. The mono-
polist then sets a price and sells the lesser of the demand by buyers and the production cap-
acity. Suppose that the monopolist faces a small cost of capacity. By Coase’s logic, she is
tempted to cut prices as quickly as possible by shrinking the time between sales periods. Hold-
ing the cost fixed, the surprising fact is that when the gap is small, then in the equilibrium
of the game with augmentable capacity, the seller can choose the same capacity and earn the
same profits as in the game in which capacity cannot be increased. That is, the ability to in-
crease capacity later does not harm the seller even in a Coasian environment, for equilibrium
profit levels are the same as those that arise when capacity is chosen once and for all. Con-
sequently, any positive cost of capacity prevents the opening price from approaching marginal
cost. The presence of a capacity cost permits the seller to behave as if she could commit to
capacity initially. In contrast, with a zero cost of capacity, the game is strategically equivalent
to the one that Gul et al. (1986) study: only the Coase equilibrium, with zero profits
in the limit, occurs. Thus, there is a discontinuity in seller profits as the cost of capacity goes
to zero.

The intuition behind the theorem suggests an effect that Coase’s reasoning neglects. The
Coasian price path requires a seller to sell to the whole market very rapidly. Because buyers will
wait for prices close to marginal cost (since these are coming rapidly), the opening price is close
to marginal cost, and most sales take place in the first few minutes. In the limit as the sales periods
get arbitrarily close, all sales take place immediately. In environments requiring production or
some transaction medium, that outcome requires the seller to produce a very large production
facility or high-bandwidth transaction facility, so that the flow of sales can be extremely large
for a very short period of time. If the cost of capacity is high relative to the size of the market,
then the seller will not purchase so much capacity. That observation means that for any positive
cost, no matter how small, the seller will not increase capacity near the end of the game, when
few buyers remain, which in turn allows her to credibly commit to a low level of capacity at the
beginning. The logic of backwards induction compels buyers to believe that she will not increase
capacity in the future, and thus that prices will fall slowly. Subgame perfection, which leads to
the Coase conjecture by forcing the monopolist to lower prices as quickly as possible, now offers
her a credible way to delay sales.

Another way to see that intuition is as follows. We will show that in the “commitment game”,
where the seller chooses capacity once and for all at the beginning, the optimal capacity increases
with the size of the market. As sales are made, the desired commitment capacity falls. Thus, a
seller who chooses a starting capacity in a neighbourhood of the initial optimal level of capacity
will not be later tempted to increase it because the starting capacity will still exceed the subse-
quent lower desired level. That result means that the seller has local commitment ability—she can
effectively commit to a slight reduction or increase in capacity around the optimal opening level.
But the ability to vary capacity locally around the global optimum is sufficient to ensure that
profits are maximized as a function of capacity because the first-order conditions are satisfied.
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That is, the level of profits when capacity is augmentable is identical to that when capacity is
chosen once and for all; the local maximum is the same as the global.

Our result that capacity choice in each period delivers the same profits as the commitment
version holds in the limit of the gap case, as the gap shrinks to zero. That case, where the gap
is positive but small, had been the only setting left where the Coase conjecture had bite and
the monopolist made no profit. In the no-gap case, Ausubel and Deneckere (1989) show the
existence of equilibria where the seller makes high profits. In the gap case, the monopolist sells
at a price near the lowest consumer’s valuation, but if the gap between marginal cost and the
lowest valuation is large, then that price entails high profits. In this paper, we show that the seller
can earn substantial profits even when the gap is vanishingly small. Thus, in any reasonable
economic situation Coase’s conclusion does not hold: a durable-goods monopolist can make
profits.

Alternatively, our result can be interpreted as a way to select from the continuum of equi-
libria of Ausubel and Deneckere (1989) in the no-gap case: when the monopolist chooses costly
capacity, equilibria where the monopolist makes very low profits are not robust to the introduc-
tion of a small discontinuity of buyers’ valuations just above marginal cost. Note that without
capacity choice, the selected equilibrium is very different. With a very small gap, the unique
equilibrium entails very low profits.

There has been some earlier work on the effect of capacity in the Coase setting. Kahn (1986)
offers a model in which more rapid sales cost more, recognizing the restrictions on the seller em-
phasized by this paper. Kahn’s model features a quadratic cost of the rate of sales. The increasing
cost of faster selling ensures that the equilibrium involves positive profits. Our result makes two
contributions relative to Kahn’s work. First, we endogenize the seller’s capacity; Kahn treats it as
an exogenous parameter. Second, in the limit as the cost shrinks, Kahn’s seller is again making
zero profits (the Coase outcome), while in our model the seller continues to make a substantial
fraction of static monopoly revenue, a fraction which remains positive (and greater than 0-298)
even in the limit. We conjecture, however, that a version of our results (in particular, that ex ante
commitment to selling capacity produces the same profits as augmentable selling capacity) holds
in a generalization of Kahn’s model with endogenized capacity. Moreover, there is no obvious
impediment to employing an analogous proof, where we interpret capacity as an input that re-
duces the slope of the quadratic cost, but further investigation is needed. The thought experiment
of the present paper is very natural in Kahn’s elegant framework. Intuitively, Kahn’s cost func-
tion is a smoothed version of ours—in our model, the production cost in a sales period is zero for
quantities below capacity and infinite beyond it.

Closer to our result, Bulow (1982) presents a very clean, parameterized example of the no-
gap case with the property that the optimal commitment capacity is invariant to the size of the
market, and constructs an equilibrium with costless capacity in which the seller initially chooses
that optimal level and is never tempted to increase it. In light of subsequent work of Ausubel and
Deneckere (1989) showing the multiplicity of equilibria in the no-gap case, the existence of an
equilibrium in which the seller earns positive profits is less surprising, and Bulow does not show
that the constructed equilibrium is unique or that there is a lower bound on the seller’s equilibrium
profits. Further, he notes that in the gap case his equilibrium would unravel. Nevertheless, the
original insight that capacity choice might limit the Coase conjecture is due to Bulow. In fact, he
speculates that introducing a cost of capacity might restore his equilibrium in the gap case.

The rest of the paper proceeds as follows. In Section 2, we set up the model. In Section 3,
we present the first main result: in the version of the game with once-and-for-all capacity choice,
the seller can earn at least 29-8% of static monopoly profits. Section 4 contains the other main
theorem, showing that the outcome with capacity choice in each period mirrors the outcome with
initial capacity commitment. In Section 5, we conclude.
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2. MODEL

A durable-good monopolist faces a market in which a continuum of consumers, indexed by g €
[0, qo], each demand a single unit. Both consumers and the monopolist live forever and discount
the future at the rate r. Sales can occur at discrete, equally spaced intervals. The time between
such sales periods is A. Thus, period z occurs at time zA, and the discount rate per period is
e "2 In order to produce the good, the monopolist must invest in capacity. The cost of buying
the capacity to produce (or to sell) at a constant flow rate of one unit of the good per unit of time
is ¢, which implies that the capacity to produce one unit per sales period costs c/A. Capacity
can be purchased in any amount—that is, it is a continuous decision variable for the seller. There
is no depreciation: once purchased, capacity is good forever. Furthermore, there are no other
production costs. If the monopolist has capacity K, she can sell at a rate of K units per time
period at zero marginal cost forever. Consumers’ valuations are determined as follows.

The value of a unit of the good to consumer q is given by »(q) = p(q) + g, where the con-
stant g is strictly greater than zero and p is a decreasing, twice-differentiable function from
[0, qo] to Ry such that p(go) = 0, p(q) > 0 for g < qo, and p’(q) +gp”(q) < 0 for all q.
(The property that p’(q) +qgp”(q) < 0 is a standard regularity condition. It is equivalent to log
concavity of demand, which ensures, for example, that the best response functions of Cournot
duopolists are downwards sloping and that a monopolist facing a per-unit tax increases his price
by less than the amount of the tax.)2 Consumers’ valuations are bounded above by »(0) and
below by g(=p(qo) + g). This is the “gap case”, where the lowest valuation among the buy-
ers is strictly greater than the monopolist’s marginal cost. The revenue function R(q) is given
by R(q) = qv(q), and marginal revenue MR(q) is qov’(qQ) + v(qQ)(=qp’(qQ) + v(q)). Setting
MR(gm) = 0 defines the static monopoly quantity gm.

At the beginning of each sales period, the monopolist publicly chooses how much additional
capacity to purchase. She then announces a price P for that period, and must sell to any buyer
who wants to buy at that price, up to a maximum of K A units. (The order of the monopolist’s
choices of price and capacity does not matter, as long as both are chosen before buyers move.)
We will assume that the rationing rule is to serve higher valuation buyers first.3

Assumption 1. [If the quantity of consumers who wish to buy in any sales period z is
greater than KA, then sales will be made to the subset of size K;A of potential buyers with the
highest valuations.

The goal of the monopolist is to maximize the discounted value of revenue minus the dis-
counted value of expenditures on capacity. (Typically, we will be considering vanishingly small
costs of capacity, so that revenue and profits are almost interchangeable.) The consumers seek
to maximize their discounted surplus. The surplus to consumer g who buys in sales period z at
price P, is e "?2[v(q) — P,]. As is standard in the literature on the Coase conjecture, we will
consider only equilibria where deviations by a zero mass set of consumers have no effect on
continuation play.

In the absence of capacity constraints, Fudenberg et al. (1985) and Gul et al. (1986) show
that there is generically a unique subgame perfect equilibrium in the gap case. That equilib-
rium satisfies the Coase conjecture, in the sense that as the period length A goes to zero, the

2. We note that the set of functions satisfying that condition is closed under truncation: since p’(q) < 0, p’(q) +
(g——-x)p”(q) <0forall x € [0,qg) and all q € [X, gp]. We note also that the regularity condition is not required for the
results of Fudenberg et al. (1985) and Gul et al. (1986).

3. Assumption 1 is made for the sake of tractability. We note, though, that along the equilibrium path no rationing
will occur. Denicolo and Garella (1999) study the effect of assuming random rationing rather than efficient rationing in a
two-period Coase model.
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monopolist earns profits close to gqp by setting an initial price close to g and selling to the entire
market nearly instantaneously. In that equilibrium, which we will call the Coase equilibrium, all
consumers are served in a finite number of sales periods, which implies that prices in each period
can be determined by backwards induction.

When there are no capacity constraints, the equilibrium path has the “skimming” property.
That is, in any period there is a cut-off valuation o such that all consumers with valuations greater
than o have already bought, and all consumers with valuations less than o have yet to buy (see
Fudenberg et al., 1985, Lemma 1; Ausubel and Deneckere, 1989, Lemma 2.1). The intuition
is that if a consumer with valuation o is willing to buy at price P, then so is any consumer
with valuation o’ > v. Both buyers get the same benefit (in the form of lower future prices) from
waiting, but the cost of delaying consumption is greater for the high-valuation consumer. Thus, in
any period the remaining market can be characterized completely by x, the volume of consumers
who have been served so far.

In principle, the skimming property may fail when we introduce capacity constraints be-
cause of the rationing rule that favours high-valuation customers. Even if both types of consumers
would prefer to wait and buy at tomorrow’s prices, the low-valuation type might still purchase
today if he knows that he would be rationed out of the market tomorrow. However, that situation
does not arise in our equilibrium analysis—it requires consumers to believe that rationing will
occur, but in any period where buyers are rationed the seller could increase revenue by raising the
price without affecting the quantity sold. For ease of exposition, therefore, we will continue to let
Xz denote the volume of consumers who have already been served at the beginning of period z.
Note that if the size of the remaining market is such that sales in each period of the correspond-
ing Coase equilibrium are no greater than K A, then the capacity constraint will never bind.
In that case, capacity is no longer relevant, and the only subgame perfect continuation is the
Coase equilibrium.

We obtain two main results. First, the optimal once-and-for-all capacity choice gives the
seller at least 29-8% of static monopoly revenue. Second, even if the seller can augment capacity
at any time, she can still credibly commit to the same, optimal level, and thus must earn at least
the same profits in any subgame perfect equilibrium. Our strategy of proof for the second result is
the following. To begin, instead of directly examining the situation that we are interested in, we
look at the continuous time case with no gap, assuming that the monopolist sells up to capacity
at every instant and that she can costlessly choose capacity once and for all at the start of the
game. In that case, we show that the optimal commitment capacity is decreasing in the quantity
of buyers already served and that commitment profits are concave in capacity. Those properties
also hold (maintaining the two assumptions) in the limit of the discrete time case with a small
gap, as the length of the periods shrinks. Next, we demonstrate that the two assumptions are
results when we consider the subgame perfect outcomes of the discrete time game in which the
seller can augment capacity in any period. In particular, if the seller chooses the optimal once-
and-for-all level of capacity in the first period, then in the subgame perfect continuation she will
never increase it, and sales will equal capacity in every period (except possibly for a few periods
at the end of the game). As an immediate consequence, the seller must make at least 29-8% of
static monopoly revenue in any subgame perfect equilibrium, no matter how small is the (strictly
positive) cost of capacity.

3. ONE-TIME CAPACITY CHOICE

In this section, we consider the case of one-time capacity choice. Suppose that the monopolist
can only purchase capacity at the beginning of the game. If she purchases none, the game is
over. For non-zero K, let p°™ (K, g) be the seller’s revenue in subgame perfect equilibrium from

(© 2008 The Review of Economic Studies Limited
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committing to capacity K when the gap is g. (An argument similar to Lemma 3 of Fudenberg
et al., 1985, shows that for any positive gap g, the monopolist will sell to all consumers in finite
time, and so generically there is a unique subgame perfect equilibrium solvable through back-
wards induction.) Let K$°™(g) be the capacity that maximizes commitment revenue p™ (K, g),
and let P°™(g) be the value of that maximized revenue.

As the time between offers A shrinks to zero, how large is the maximized commitment
revenue P (g) relative to the static monopoly profits R(gm)? (Remember that the static mono-
poly profit is the highest that the monopolist could attain even with the ability to commit to
future prices.) Theorem 1 provides a global minimum for revenue equal to a fraction y of the
static monopoly profits. The exact value of y, which approximately equals 0-298425, is defined
as follows.

Definition 1. Define the constant y as the value maxy.o 1= 34X,

Theorem 1. As A shrinks to zero, the limit maximized commitment revenue
lima—0 PY™(@) > 7 R(Gm).

Proof.* We manipulate the revenue expression to derive the lower bound on revenue. The
seller’s equilibrium revenue P™(g) is no less than the revenue P™(g) that she would obtain
if she were restricted to offer prices so as to sell quantity equal to capacity K A in each period
(except possibly in the last sales period, if the remaining size of the market is less than K A). The
market is saturated at T = [qo/K AT, the smallest integer at least as great as go/K A; at this point,
the price is g. Let o; be the value of the marginal buyer (i.e. the one with the lowest valuation) in
period t (so that o = o (K At) fort < T). Let P; be the price charged by the seller. Since Py =g,
and the marginal buyer in any earlier period t is indifferent between buying in period t and in
period t + 1, we have

Pr=v1r =0, and

Po=(1—e "o+ 4 Pya, 50
Tt _

P = e—rA(T—t+1)g+(1_e—fA)ze—fAJUH_j. 1
j=0

The quantity sold g in each period before T is K A, so substituting expression (1) into the
formula for revenue yields

.
PAM@ =D et PR

t=1
A(T-1) T A1) ay (€T S e

> —e AT gk A+ > e D@ —e) [ ————g+ > e My |KA
T e—rAT

> —e_rA(T_l)gKA—|—(l—e_rA)KAZ(e_rA(t_l)Utt+mg)
t=1 B
T

> e AT-DgK A+ (1—e KA S e Ay, )
t=1

4. We thank a referee for suggesting this proof, which is much simpler than our original version.
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where the term —e~"2(T-DgK A reflects the possibility that sales in the last period may be less
than K A. Now, let m = [gm/K A1, the number of periods it takes to sell the monopoly quantity
Om- Since m < T and v decreases with t,

_ m
POM(g) > —eTAT-DgKA+(1—e")KA S e A1yt
t=1
1—e"AM1 4 (1—e"m
=—e AT DgKA+(1—e"K Aoy ( +_(rA 5 m
(1-eT"4)
1—e M1+ (1—-e"2m)
(1—e"4)m '
As A shrinks, K Am approaches gm, and thus v, approaches the monopoly price p(gm), SO

K Amom, converges to monopoly profits R(gm). In addition, the term —e~"A(T =D gK A shrinks
to zero with A. Thus, defining z as (1 —e™"4)m, we can write

=—e"AT-DgK A +KAMom

im PM(g) - max (l—e*rAm(l+(l—e*'A)m))
A>0 R(gm) ~ m>1 (1—e"H)m
—rA
1) 1y 2)
= max
z>1-e A z

Since —r A /1 —e™" A is decreasing in A and converges to —1 as A shrinks to zero (the proof
is in the Appendix), we get

PP 1-e (1
lim 49 > max 1-ed+y _ y
A—=0 R(Om) ~ zz1-e2 z

(The constraint does not bind because the maximizer is roughly 1-79.) ||

That bound, which is independent of the interest rate r, is tight. Suppose that p(q) =
(1 —q)%, for a near zero. This functional form satisfies the demand conditions. As « goes to
zero, demand converges to “unit” demand, so m approaches T and oy approaches oy, for all t.
At the other extreme, the profits with a capacity constraint may be arbitrarily close to the static
monopoly profits. In the constant elasticity of demand case, in the limit as the elasticity converges
to 1, the ratio of the capacity-constrained revenue to the static monopoly profits converges to 1
(when time is continuous).> We note that expression (2) can be rewritten as the sum of a few
terms that shrink to zero with A plus

T-1
> e Mp KAt +1) — oK At].
t=1

Thus, commitment revenue is roughly equal to the discounted sum of buyers’ static marginal
revenues, which illustrates the seller’s twofold loss relative to static monopoly. First, she eventu-
ally sells beyond the monopoly quantity g, to buyers with negative marginal revenues. Second,
she sells to the high-value consumers (those who have positive marginal revenues) only gradu-
ally, leading to delay costs. Those losses are proportionally greatest when the monopoly quantity
Om is large (i.e. close to qp), as it is when p(q) = (1 —q)“ for low a. It takes time to sell to all the
high-value consumers, and the wait between selling to the last high-value consumer and reaching
price zero at g is very short. In the case of constant elasticity close to 1, conversely, gm is close

5. The derivation is available from the authors upon request.
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to zero, which minimizes the loss. Linear demand p(q) = 1 —q lies in between. Numerical com-
putation shows that for linear demand, profits are roughly 55-74% of the static monopoly profits
of 0-25 (again with continuous time). At an annual interest rate of 5%, the monopolist optimally
sells to approximately 1-86% of the market per year.

Next, as a preliminary to Theorem 2, we examine how the monopolist’s optimal level of
commitment capacity changes as the size of the remaining market shrinks. Let p™ (K, x, g) be
the seller’s revenue in subgame perfect equilibrium from committing to capacity K when quantity
x has already been sold and the gap is g. We study p°™(K, x, g) indirectly by considering
the limiting, continuous time case with no gap, assuming that the monopolist sells at a rate
equal to capacity until demand is satisfied. In that case, what if, after having sold quantity x, the
seller were given a one-time chance to adjust her capacity? Define p®°™(K, x) as the revenue
remaining when quantity x has been sold and K is the capacity, and let the optimal capacity be
K ®M(x). Lemma 1 shows that the optimal capacity decreases with x, and that commitment profit
is strictly concave in capacity. That is, as the size of the market shrinks, the monopolist prefers to
decrease capacity. If she is able only to increase capacity, then she prefers to leave it unchanged
since revenue decreases with capacity above the optimal level. The proofs of Lemma 1 and all
subsequent proofs are in the Appendix.

Lemmal. Theoptimal commitment capacity K ©©™(x) isdecreasing in the quantity served
X, and revenue p®°M (K, x) is strictly concavein K.

Lemma 2 shows that as g and A shrink to zero, p™(K, x, g) converges uniformly to
pEM (K., X).

Lemma 2. Pick any K > 0. If Assumption 1 holds, then for any ¢ > 0, there exist real
numbersc(e) > 0, g(e) > 0, and A(e) > 0 such that whenever ¢ < c(e),g < g(e),and A < A(e),
then |pC™ (K, x, 9) — p®°M(K, x)| < ¢ for all K > K and x € [0, go].

To show uniform convergence, we argue that in the gap case, in equilibrium sales take place
at rate K, as we assumed to be the case in deriving the properties of p©°™(K, x) in Lemma 1.°
Thus, p™(K, x, g) converges pointwise. Next, we obtain uniform convergence by bounding the
effect on revenue of a marginal change in x or K. The marginal revenue effect of a change in the
size of the market is no greater than the highest consumer valuation, which is an upper limit on
willingness to pay. Raising capacity may either increase revenue, by allowing sales to be made
more quickly, or decrease revenue, because buyers anticipating faster falls in prices are willing
to pay less. We derive uniform bounds on both effects.

In Section 4, we return to augmentable capacity and apply the results of this section.

6. One way to see that result is to note that then

dx dx
OMK,x)=  max PX) — + p ™K, x) —rp®M(K,x) 4+ pSPM (K, X) —
P (K, X) o<diX <k ()dt+p (K, ) =rp™ (K, X) + py ( )dt

max [P(x)+p§°m(K,x)]d—X.
X dt

T I 0<dx/dt<K

Since p®©M(K,x) > 0, it must be that [P(x) + p$°™ (K, x)] > 0, and so the optimal rate of sales dx/dt is the upper
bound, K.
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4. AUGMENTABLE CAPACITY

Now, we consider strictly positive gap g, capacity cost ¢, and period length A. We also
allow the seller to increase capacity in any sales period. Our second main result is that in
the limit, the monopolist earns commitment profits, even when she can augment capacity in
every period.

Theorem 2. If Assumption 1 holds, then for any ¢ > 0, there exist a real number
c(¢) > 0 and integer-valued functions g(c,¢) > 0 and A(c,¢) > 0 such that whenever ¢ <
c(e),g < g(c,e), and A < A(c,¢), then any subgame perfect equilibrium gives the monopo-
list a profit of at least lims_,0 PY™(9) —é.

The intuition is as follows: suppose that play is one period away from a Coase path. That
is, if K A units are sold in the current period, then next period’s remaining market size will be
such that in each period along the path of the Coase equilibrium for that market size sales do not
exceed K A; that is, the capacity constraint will not bind. In that case, any additional capacity
that the monopolist purchases will be used in at most one sales period, so its marginal benefit
is bounded by v(0) A, which shrinks to zero as the period length A falls. The marginal cost c of
capacity, on the other hand, does not vary with A, so for small enough A the monopolist will not
increase capacity.

Now suppose that the firm has capacity K at least as great as K™, and suppose that the
size go — x of the remaining market is such that play is one sales period away from a subgame
where the unique equilibrium entails never increasing capacity. In that case, this period’s capacity
will be the capacity for the rest of the game. The firm, then, would like to choose capacity
K €M (x). However, Lemma 1 (plus an appropriate continuity argument following from Lemma 2)
implies that existing capacity K is already greater than or equal to optimal capacity KM (x),
and that increasing capacity cannot raise profits. (The presence of a positive gap g tends to drive
up the optimal capacity near the end of the market, but if g is small enough the new optimal
capacity remains below the initial optimum. At the very end, so few consumers are left that
even a very small cost is enough to deter an increase in capacity. That is, even if the revenue-
maximizing capacity increases at the end of the market, the profit-maximizing change in capacity
is zero.) Therefore, the firm will not purchase any additional capacity. Thus, by induction, if the
monopolist chooses capacity K™ in the first period, she will never increase it, and so will earn
the profits from committing to that capacity.

To summarize: Lemma 1 shows in the continuous time, no-gap case that i) optimal com-
mitment capacity falls with x and ii) commitment profits fall in capacity above the optimal level.
Thus, for x > 0, the new optimal capacity is strictly lower than the initial optimum (which the
seller already has), and increasing capacity further will only lower revenue. In the discrete time,
small gap case (with small enough period length and gap), the same will be true—that argument
is Step 2 of the proof of Theorem 2. (Even if revenue is no longer quite decreasing in cap-
acity, as may happen at the end of the market, a small cost of capacity ensures that profits are
decreasing—that argument is Step 1.)

We showed in Section 3 that revenue in the commitment version of the game is at least
a fraction y (= 0.298) of static monopoly revenue R(qm). That result implies the following
corollary of Theorem 2.

Corollary 1. If Assumption 1 holds, then for any ¢ > 0, there exist a real number c(e) > 0
and integer-valued functions g(c, ¢) > 0 and A(c,¢) > 0 such that if ¢ < c(¢),g < g(c, &), and
A < A(c, ¢), then any SPE gives the monopolist a profit of at least y R(gm) —&.
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Thus, rather than making the zero profit predicted by the Coase conjecture, the monopolist
attains a substantial fraction of the profit that she could make if she could commit to a schedule
of prices. Note that throughout our analysis, we take the limit as the capacity cost shrinks of
the limit of profits given the cost as the time between sales periods shrinks. As discussed in the
introduction, that is the appropriate order of limits: the cost is exogenous to the monopolist, while
Coasian logic compels her to sell as quickly as possible.

5. CONCLUSION

This paper demonstrates that capacity costs of arbitrarily small degree can eliminate the zero
profit conclusion of Ronald Coase’s (1972) conjecture. Coasian dynamics—prices falling over
time and quantities eventually exceeding the static monopoly quantity—prevail, but capacity
choice provides a strong means of slowing the sales, thereby slowing the fall in prices, and thus
permitting initial prices well in excess of marginal costs.

Whenever capacity is a choice, Coase’s conjecture requires a monopolist to act in a manner
not in her best interest. In order to implement the Coase path, the monopolist must invest in the
resources to sell to all the buyers instantly. Usually, this investment will require some outlay;
our result shows that even an arbitrarily small outlay serves as a strong commitment device for
the monopolist. The monopolist cannot be compelled by the rational expectations of buyers to
expand capacity beyond the profit-maximizing level. That is, buyers can expect rapid sales (and
hence low prices) only if the monopolist creates the necessary capacity, but that investment is not
in her best interest. When she fails to buy a large capacity, backwards induction forces the buyers
to conclude that she will not expand capacity in the future, which makes the decision to choose
low-capacity rational.

Thus, we find that the Coase conjecture is not robust to a very reasonable change in the
specification of the environment. The logic of subgame perfection dictates that the mono-
polist continues to sell beyond the static monopoly level, but the ability to slow these sales by a
smaller capacity choice, even in the limit when capacity becomes free, ensures that the mono-
polist earns a significant fraction of the static monopoly profits. The seller makes at least 29-8%
of the monopoly profits, which is a far cry from zero.

Besides capacity costs, which apply in almost any setting, there are a variety of other means
that in some situations may enable a durable-goods monopolist to escape the grim logic of the
Coase conjecture. Leading the list is renting, which is mentioned in Coase’s original article. A
seller who rents, rather than sells, has no incentive to expand output beyond the monopoly quan-
tity, for such an expansion entails a price cut not only to the new customers but also to existing
customers. By allowing existing customers to renegotiate, rental serves a means of committing to
a “most favoured customer” clause, in which early buyers are offered terms no worse than later
buyers. Renting as a means of commitment has been offered as an explanation for IBM’s rental
of business machines (Wilson, 1993), although evidence is scant. Other solutions offered in the
literature include return policies or money-back guarantees, destroying the production facilities,
making the flow costs of staying in the market expensive (e.g. by renting the factory), conceal-
ing the marginal cost from buyers to interfere with their expectations about future prices, and
planning obsolescence to eliminate the requisite perfect durability (see Tirole, 1988).

The analysis of Sobel (1991) suggests that entry of potential buyers (quite reasonable in light
of finite human lifespans), which is isomorphic to imperfect durability, will create a price cycle.
Prices tend to fall until it pays to sell to low-value consumers because sales to high-value con-
sumers have made them relatively rare; once existing low-value consumers are satisfied, prices
rise and sales are made only to newly born high-value buyers. This analysis was enhanced by
Pesendorfer (1995) for goods with a network diseconomy. A logical conjecture is that the
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presence of capacity choice will enhance the seller’s ability to dynamically price discriminate
and lengthen the price cycle, but we have not investigated this formally. It is conceivable that the
seller might choose such a low capacity so as to sell only to high-value buyers, thereby eliminat-
ing cycles altogether.

The Coase conjecture has been investigated in two finite versions. Bagnoli, Salant and
Swierzbinski (1989) demonstrate that if there are finitely many potential buyers of known types,
then there is a subgame perfect equilibrium with the seller extracting almost all the surplus. Es-
sentially, she offers the good at a price near the maximum value; after that transaction, she offers
at the next highest value, and so on. This model requires an unreasonable level of detailed know-
ledge on the part of the seller, but is interesting because it has such a different outcome from the
continuous model. A bridge between the continuous and the discrete demand cases was devel-
oped by Levine and Pesendorfer (1995). von der Fehr and Kuhn (1995) show that if it is the seller
who can set prices only in a discrete set, then her profits shrink to zero. The form of discreteness
in our model (namely, that within a sales periods marginal cost is zero up to capacity and infinite
above it) is qualititatively different, and it yields a very different outcome. McAfee and Vincent
(1997) consider the Coasian auction problem, where the seller has one unit to sell to finitely
many buyers who privately know their willingness to pay. They show that the opening reserve
price exceeds marginal cost (even in the limit), but that the likelihood that the reserve price binds
converges to zero as the periods come faster. Consequently, auction profits converge to the same
level of profits arising from holding an auction with efficient reserve price. This model suggests
a very different setting to consider capacity choice.

The Coase model can also be used to describe sequential bargaining between a seller with
a single unit of a good and a buyer with a privately known valuation. The demand curve from
the multiple-buyer case is then reinterpreted as the probability distribution of the single buyer’s
value. With capacity constraints, however, the two models are no longer equivalent. When there
is only a single unit to be produced, capacity becomes unimportant.

Finally, we briefly examine the impact of allowing the monopolist the option to reduce as
well as to augment capacity in each period. Suppose that in each sales period, the monopolist can
either increase or decrease capacity, at a symmetric cost of ¢ per unit. (For example, there may be
a cost to closing down a factory or laying off workers.) In such an environment, the monopolist
may be able to credibly commit to a sales path where the volume of sales per period decreases
over time. Such a path could yield revenues even higher than the commitment profits in Section 2
because the monopolist sells to high-value consumers quickly. Those consumers are still willing
to pay a high price because after they buy, prices will fall only very slowly as the monopolist
reduces capacity.

APPENDIX. PROOFS

Proof that —r A /1—e~ "2 isdecreasingin A and limy_,g—rA/1—e "4 =—1,
o —rA  —(1-eAypraerh
oA 1—eTA (1—eTd)2r

andthus —r A /1—e "2 isdecreasing if f(A)=—(1—e"2)+rAe "2 <0forall A >0.But f/(A)=—r2A2e~"A <
0,s0 f(A) > f(0)=0.
To show convergence to —1, note that
—rA . o(—=rA)/oA

lim = lim
A>01—eTA A 08(1—eTA)/0A

-

= lim —— =-1. |
A—0reTA
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Proof of Lemma 1. Let P(X, t) be the price charged at time t (starting from time 0 when quantity x has been sold).
Following Stokey (1982), we note that the unique expression for the price path is

o

o—X

qp—X
P(x,t) —e (- p(g) +re't e "Sp(x+Ks)ds.

T~

The seller’s revenue is

o

lp—X

A

pCOM (K, x) = e "tK P(x, t)dt

o

o —X dp—X

o

A

qp—x
et | ke T (1) p(qo) +re't e "Sp(x+ Ks)Kds | dt

—

Il
o ]

QOK—X QOK—X
r / e "Sp(x+Ks)Kds | dt (using p(qo) = 0)
0 t
do—X Yo—X
K (X
=rt / e "Sp(x+ Ks)de‘t:0 K+ / rte " p(x + Kt)Kdt (integration by parts)
t 0
go—x
K
= / rte” M p(x+ Kt)Kdt
0
do
= /a(q —x)e~ =X p(q)dq (change of variables: q = x + Kt and a=r/K)
X
o0
= / e~3(@a(q - x)p(q)dq (since p(q) = 0 for g > o)
X
o0
= / ze % p(x+ z/a)% (change of variables: z=a(q — x))
0
0.0
=/ze_zp(x+bz)bdz (settingb=1/a=K/r).
0

Therefore,

[o¢]
% = / ze"%(p(x +bz) + bzp' (x +bz))dz, and
0

sz
oxob

o0

= /ze_z(p’(x +bz) 4+ bzp” (x + bz))dz
0
o0

= / a(q—x)e"2079 (p () + (g — %) p’ (@))da.
X
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Thus, a sufficient condition for K™ (x) to decrease in x is p’ +qp” < 0. That this condition is sufficient follows
from the following logic. If p” <0, then p’+(q—x)p” < 0. If p” > 0, then p'+(q—x)p” < p’ +gp” < 0. Either way,
the term is non-positive. Moreover,

2 o0
(zT)pz = / ze”%(2p (x +bz) +bzp” (x + bz))dz < 0,
0

S0 revenues are strictly concave in K, and the first order conditions uniquely characterize a maximum. ||

Proof of Lemma 2.  First, we note that pcAom(K, X, g) converges to p®®M (K, x) pointwise. (If we introduce any
positive gap g in the continuous time, commitment case, then the monopolist will sell to the whole market in finite time,
given K > 0, and there is a unique backwards induction solution. Coasian dynamics imply that in that equilibrium, at
each instant sales are made up to capacity; that is, at rate K.) Similarly, for high levels of capacity K, all sales will take
place almost instantly, and revenue will be close to g(gy — X). There exists a K, then, such that when K > K, both
PRX™(K, %, g) and p®M (K, x) converge uniformly to zero as g and A shrink.

It remains only to show uniform convergence at K e [K, K]. We first bound the marginal effect on /)Zom(K, X, 9)
and p®M(K, x) of small changes in x and K. The marginal increase in revenue from increasing the size of the remaining
market is no greater than v(0)(=p(0) + @). Thus, if |x —X’| < &/5p(0), then [p A®®T(K, x,g) — p™(K, X', )| and
[pOM (K, x) — p®M(K, x")| are both less than & /5 for small enough g.

An increase in capacity may increase commitment revenues by allowing sales to be made more quickly. If the
capacity constraint binds in every period, then the waiting time until the last buyer is served is qg/K, rounded up to the
nearest A. (Call that value T.) Thus, an increase in K that reduces the value of gp/K by d might decrease that waiting
time by up to d+ A. The resulting increase in the discounted value of revenue, then, is no more than

e (T=@+0)0)go — e~ T0(0)gp < (€ @4 — 1) (0)cp, (A1)

which bounds the increase in case i) all sales take place in the last period, ii) all buyers pay »(0), and iii) the monopolist
does not have to charge lower prices in order to sell more quickly.

Conversely, raising capacity can reduce revenue if buyers expect faster falls in prices. Since consumer g is indifferent
between waiting d + A units of time to pay the last price g and paying e~ (d+2) g 4+ (1 — e="@+2)),(q) now, the
reduction in revenue that results from lowering the value of gqg/K by d (and thus decreasing the waiting time by up to
d+ A) is no greater than

e Tg+@—e Mg — [ T-@+A g4 (1 —e " T=E+2),(0)]qp
< (€2 —1)[(0) - glq. (A2)

That bound applies even if all consumers have the highest valuation »(0), and the reduction in revenue is not dis-
counted. Because g > 0, the magnitude of expression (A2) is strictly less than that of expression (Al).
Choose a d* satisfying (e’d* —1)o(0)g < /5. If [K —K'| < (K?/qg)d*, then

loo/K —go/K'| < d*.

Thus, if A is small enough and |K — K’| < (K?/gg)d*, then the values of the distances pPM(K, %, 9) —
LMK, x,9)] and |p®M (K, x) — p®M (K, x)| are both less than &/5 for all K, K’ e [K, K].

Finally, choose a finite subset F C [K, K] x [0, gp] such that every point in [K, K] x [0, o] is within min{e /5p(0),
(K2/qg)d*} of an element of F. Since PR™M(K, x, g) converges to o™ (K, x) pointwise, we can choose A and g small
enough that, in addition to the conditions above, [p5°™ (K, x, g) — p®®™(K, x)| < &/5 for every (K, x) € F. Now, pick
any point (K, x) e [K, K] x [0,qg], and let (Kg,xp) be the nearest element of F. By construction, |pCA°m(K,x,g) -
PO (K, )| <& (pPM(K, x, g) is within &/5 of pS°™ (K, x, g), which is within &/5 of pS°™(Kg, xF,g), which is
within /5 of p®®M(K g, Xg), which is within &/5 of p®®M(K g, x), which is within &/5 of p®©®™(K,x).) ||

Proof of Theorem2.  As a preliminary, we introduce four new definitions. Let the function L(x, g, A) denote the
quantity sold in the first period of the Coase equilibrium (i.e. without capacity constraints) with market size gg — X, gap
g, and period length A. Define S%ax(x, g, A) as the maximum quantity sold in any period along that Coase equilibrium
path. The quantity sold in the first period of the equilibrium when capacity is fixed at K, the served market is x, the gap
is g, and the period length is A is given by SP™ (K, x, g). Lastly, let K'®(g, c) be the highest optimal commitment
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capacity over all possible market sizes. That is,

KN®(g,c)= max (argmaxp?™(K,x,9)—cK ).
xe[0,00]\ K>0

The proof is inductive. First, we say that play is one sales period away from a Coase path if i) current capacity is less
than the Coase sales quantity and ii) the market that remains after the monopolist sells her capacity in the current
period is such that the quantities sold in each period in that market’s Coase equilibrium are no greater than current
capacity—that is, if

L%z, 0, A) > Kz1A > Soax Xz + Kz—14,9, A).

We will show that if play is one sales period away from a Coase path, then there is a unique subgame perfect
continuation, in which the monopolist will never increase capacity. Note that the capacity constraint cannot bind in the
last period of sales, and the monopolist will eventually sell to the entire market, so eventually play must be on a Coase
path. Second, we say that play is one sales period away from a unique continuation with constant capacity if for all
market sizes x > xz + S™(K,_1.,Xz,9) and all K > K,_1, there is a unique SPE, and in that SPE capacity is never
increased. We will show that if K,_1 > K?a"(g, ), and play is one sales period away from a unique continuation with
constant capacity, again there is a unique subgame perfect continuation, in which the monopolist will never increase
capacity. Next, we show that by choosing initial capacity equal to Kgax(g,c), the monopolist can guarantee profits
of at least p°™(K1®(g.¢), 9) — cK 1™ (g, c). That observation is sufficient to establish the result, since Lemmas 1
and 2 ensure that p°™(K ¥ (g, c), g) converges to AIiLn0 PP™(g). (In Lemma 2, take K as KM (0)/2. Since Lemma

1 implies that KM (0) is the unique maximizer of p*°M(K,0), that p®M(K, x) is strictly concave in K, and that
KM (x) is decreasing, the uniform convergence of p°™ (K, x, g) means that K 1®(g, c) converges to K™ (0), and
thus that p°™ (K1 (g, c), g) converges to AIimO PP™(g).)

-

Step 1. One sales period from the Coase path.

First, note that the monopolist, having chosen Kz > K,_1, will set a price so as to sell either KzA or the Coase
quantity SC(xz, g, A), if KzA exceeds SC(xz, g, A). Let x* equal Xz +min{KzA, S°(xz, g, A)}. Fudenberg et al.
(1985) show that the optimal action (subject to subgame perfection) for the monopolist when i) x lies in the interval
[x* — SC(Xz, g, A), x*] and ii) the continuation from x* is on the Coase path, is to sell volume x* — x, at the Coase
price. Thus, the quantity sold Sin period z is equal to the smaller of Kz A and (X, g, A).

Whether or not the monopolist increases capacity above K,_1, then, play starting next period will be on a Coase
path, where the capacity constraint never binds. Therefore, any additional capacity the monopolist purchases in period
z will be used at most once. Furthermore, because Coase profits are decreasing in x, and S= min{KzA, L (x, g, A},
continuation profits are no greater than the level that results from not increasing capacity. By similar reasoning, the
price charged in period z is no higher than the price if capacity is not increased. Thus, the marginal revenue of increasing
capacity in period z is bounded above by the highest consumer valuation, »(0), times the amount of the additional capacity
used in one period, A. That bound, »(0) A, shrinks to zero as A falls. The marginal cost of raising capacity, on the other
hand, is the constant c. Thus, if A is small enough, the only subgame perfect action for the monopolist is to choose
Kz = KZ—l'

Step 2. One sales period from a unique continuation with constant capacity and K, > Kgax (9,0).

First, note that since Kz > K,_1 > K'®(g.¢) > SP™(K,_1, Xz, 9), if the monopolist does not increase capacity
in period z, she will set a price so as to sell quantity S°" (K;_1, Xz, g), by definition of S (K,_1, Xz, g). Note also
that the monopolist’s maximal revenue consistent with subgame perfection if she does increase capacity to Kz > K,_1 is
bounded above by pgom(Kz, Xz, 9), the profit if the monopolist can commit to never again increasing capacity. (The only
way that the maximal revenue without commitment could be higher than the commitment revenue is if the monopolist
would optimally increase capacity after the first period. In the present case, however, the induction hypothesis ensures that
capacity will not be increased when the served market x rises to xz + SP°™ (K1, Xz, ) or higher, and the monopolist
already has sufficient capacity to reach that level in one’s sales period.) Since i) current capacity K,_1 already weakly
exceeds K™ (g, c), ii) Lemma 1 implies that ™ (K, x7) is decreasing in K above that level, and iii) Lemma 2 shows
that p°M (K, xz,g) converges uniformly to p®™(K, xz), for small enough g and A the value of p°™(Kz, xz,9) —
c(Kz — Kz_1) cannot increase with Kz > K,_1. In order to maximize profits, then, the monopolist will not increase
capacity when play is one period away from a unique continuation with constant capacity and K,_1 > Kg‘ax(g, ).
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That ends the induction. Thus, the monopolist can guarantee herself a profit of p°™(K (g, ¢), g) — cK 1®(g, ¢)
by purchasing capacity ngax(g’ c) in the first period. Any SPE, therefore, must give the monopolist at least that level of
profits. ||
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