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Abstract. The standard business model in the sponsored search mar-
ketplace is to sell click-throughs to the advertisers. This involves running
an auction that allocates advertisement opportunities based on the value
the advertiser is willing to pay per click, times the click-through rate of
the advertiser. The click-through rate of an advertiser is the probability
that if their ad is shown, it would be clicked on by the user. This quantity
is unknown in advance, and is learned using historical click data about
the advertiser. In this paper, we first show that in an auction that does
not explore enough to discover the click-through rate of the ads, an ad-
vertiser has an incentive to increase their bid by an amount that we call
value of learning. This means that in sponsored search auctions, explo-
ration is necessary not only to improve the efficiency (a subject which
has been studied in the machine learning literature), but also to improve
the incentive properties of the mechanism. Secondly, we show through
an intuitive theoretical argument as well as extensive simulations that a
mechanism that sorts ads based on their expected value per impression
plus their value of learning, increases the revenue even in the short term.

1 Introduction

Online advertising provides the major revenue source for most online services
today. The most common standard in the online advertising marketplace is Pay-
Per-Click, which means that the publisher sells “click-throughs” to the advertis-
ers. An advertiser is charged only when a user clicks on their ad. The allocation
and pricing of such ads are often done through an auction: each advertiser spec-
ifies the maximum they are willing to pay for a click-through, and the auction
mechanism decides which ad(s) should be shown and how much each of them
should pay in the event of a click. The most prominent example of online ad
auctions is sponsored search auctions, which allocate the ad space on the side of
search results pages of major search engines.

The efficient allocation of ad space in a pay-per-click system is based on
the expected value from each impression of the ad. This expected value is the
product of the advertiser’s value for each click and the probability that if the
ad is shown, it will be clicked on. Estimating the latter parameter, called the
Click-Through Rate (CTR), is a central piece of an ad allocation engine.

The problem of efficiently allocating the ad space and simultaneously es-
timating the CTR for future is essentially a form of the multi-armed bandits



problem [4]. In this problem, the task is to strike a balance between exploring,
i.e., showing an ad to get a better estimate of its CTR, and exploiting, i.e.,
showing ads that have the best performance, according to our current estimates
of the CTRs. There are several papers that give explore-exploit algorithms for
this problem from a machine learning perspective [1, 6, 7, 14–16, 11]. The goal
of this paper is not to give yet another explore-exploit algorithm for sponsored
search (even though our analysis involves designing an algorithm for a simple
setting). Instead, we seek to make two points in this paper: First, even a second-
price auction, which is incentive compatible in most settings, fails to be incentive
compatible when the mechanism does not perform exploration. Specifically, in
such a mechanism, an advertiser has an incentive to increase their bid by some
amount, which we call their value of learning. This means that performing explo-
ration improves not only the efficiency of the mechanism, but also its incentive
properties. Furthermore, this suggests an exploration-exploitation mechanism
that is quite natural from an economic standpoint: sort the ads based on their
expected value per impression plus their value of learning. Multi-armed ban-
dits algorithms based on Upper Confidence Bounds [3, 4] can be considered in
this vein.

Second, despite the intuition that “exploration has some short-term cost”,
we show that incorporating value of learning in the auction mechanism (the way
described above) can lead to a higher revenue even in the short term. In other
words, in a mechanism that performs exploration by incorporating value of learn-
ing, the cost of learning is paid by the advertisers, and not by the seller. This is
based on the intuition that value of learning gives higher boost to advertisers in
lower slots, thereby helping to level the playing field among advertisers compet-
ing for the same ad space and increasing the competition. We show this through
a non-rigorous theoretical argument (as making the statement rigorous requires
arguing about a complex Bayesian model), as well as extensive simulations using
real advertisers’ data.
Previous Work. In addition to the vast literature on the explore-exploit al-
groithms for various forms of the multi-armed bandit problem [1, 6, 7, 14–16, 11],
the paper by Goel and Munagala [10] is related to our work. They attack the
problem of uncertainty about click-through rates using a different approach, by
allowing the advertiser to make a per-impression as well as a per-click bid.

2 Model and Notations

We consider a setting where n advertisers (or bidders) are competing to be placed
in one of the m slots, numbered 1 through m. Advertiser i has a value vi and
bids bi for a click. We assume a separable model for click-through rates, i.e.,
there is a value γj associated with each slot j = 1, . . . ,m (called the position
bias of slot j) and a value λi for each advertiser (called the clickability of this
advertiser), such that if the ad of advertiser i is displayed in position j, it will
be clicked on with probability γjλi.1 We assume that the slots are numbered
1 This is assumed to be independent of other ads placed on the page; for models that

do not make this assumption see [9, 2, 12].



in decreasing order of their position bias, i.e., γ1 ≥ γ2 ≥ . . . ≥ γm. The exact
clickability of advertisers are not known, and the system tries to estimate these
quantities based on the past performance of the ad. We denote the estimate of
the clickability of advertiser i by λ̂i. Note that this value can change as time
progresses.

The most common mechanism for allocating the ad slots to the advertisers
is the so called generalized second price auction (GSP) [8, 17]. In this mecha-
nism, the advertisers are ordered in their decreasing order of their λ̂ibi, and slots
1 through m are allocated to the top m advertisers in this order (or are left
empty if the number of advertisers is less than m). The amount the i’th adver-
tiser is charged in the event of a click is the minimum this advertiser could bid
and still win the same slot. This means that if advertiser i is allocated slot i,
the price per click for this advertiser is pi := λ̂i+1bi+1/λ̂i. As shown in [8, 17],
bidding truthfully is not an equilibrium in the GSP mechanism, i.e., the adver-
tisers have incentive to submit bids other than their true value per click, but it
has full-information equilibria which coincide with the outcome of the Vickrey-
Clark-Groves (VCG) mechanism, which is a well-knwon incentive compatible
mechanism. In the case that there is only one slot (m = 1), the GSP mechanism
is the same as the second-price auction, which is incentive compatible. In the
next section, we will focus on this case to separate out the strategic issues of
the GSP mechanism from the incentive issues resulting from the uncertainty in
click-through rates.

3 Incentives in auctions without exploration

In this section, we look at the second price auction described in the previous
section from the perspective of one advertiser, and show that in a repeated
second-price auction without exploration, when there is uncertainty about the
clickability of the advertiser, it is no longer in the advertiser’s best interest to
bid her value per click. Specifically, the advertiser has the incentive to increase
her bid in order to induce the mechanism to explore her. This is done through
a simple model defined below.

We assume that the advertiser i faces a price per impression distribution
Dp, i.e., the highest bid times click-through rate among other advertisers is
distributed according to Dp. We make the simplifying assumption that this dis-
tribution does not change over time and is independent in each time step. The
advertiser has a value per click vi, and a clickability λi, which is distributed
according to a prior Dλ. Neither the advertiser nor the auctioneer knows the
value of λi. Instead, an unbiased estimate λ̂i of this value is calculated using
Bayesian updating given the current history, i.e., the estimate λ̂i at any point
in time is equal to the expected value of λi given the prior Dλ and the observed
click/no-click history. In each time step, the advertiser decides how much to bid
(the bid bi can change as time progresses); then a price p is picked according
to Dp, and if λ̂i ≥ p, i’s ad is displayed and i is charged p/λ̂i in the event of a
click. Both advertiser i and the auctioneer will observe whether or not the ad



is clicked on. We assume an infinite time horizon (i.e., an infinite sequence of
auctions) and a discount factor of δ < 1.

In the above model, if there is no uncertainty about the clickability λi (i.e., if
Dλ has a singleton support), the optimal strategy for advertiser i to bid bi = vi
in every round. In the rest of this section, we show that this is not the case
in general where there is uncertainty about λi. To demonstrate this point, we
calculate the advertiser’s optimal strategy as a recurrence and prove that it is
non-negative in general. We will also give a lower bound for the advertiser’s
optimal bid in the case of uniform distributions.

At any point, the state can be described by two numbers (k,N), indicating
a state where the ad of the advertiser has been shown N times and out of these
impressions, k of them have lead to clicks. Based on the prior Dλ, the posterior
distribution of the clickability at this state can be computed. Let λ̂k,N denote
the expected value of this posterior distribution. Let U(k,N) denote the optimal
utility of an infinite sequence of auctions, starting from this posterior distribution
on λ. We obtain a recurrence relation for U as follows: let b denote the bid of
the advertiser in the first round. If p < λ̂k,Nb, then the advertiser wins and has
to pay p/λ̂k,N in the event of a click. By the definition of λ̂, this means that the
advertiser pays p per impression in expectation. Therefore, the total utility of
the advertiser in this round can be written as:

Pr[p < λ̂k,Nb](vλ̂k,N − E[p|p < λ̂k,Nb]).

We denote the above value by g(λ̂k,N , b). Denoting the pdf and the cdf of Dp by
f(.) and F (.) respectively, the above expression can be written as:

g(λ̂k,N , b) =
∫ λ̂k,Nb

0

(vλ̂k,N − p)f(p)dp. (1)

If the ad is shown (which happens with probability F (λ̂k,Nb)), it is either
clicked on (with probability λ̂k,N ), or not (with probability 1 − λ̂k,N ); leading
us to one of the states (k+ 1, N + 1) or (k,N + 1). Therefore, the overall utility
of the advertiser can be written as:

U(k,N) = max
b

{
g(λ̂k,N , b)

+ δF (λ̂k,Nb)
(
λ̂k,NU(k + 1, N + 1) + (1− λ̂k,N )U(k,N + 1)

)
+ δ(1− F (λ̂k,Nb))U(k,N)

}
. (2)

This implies:

U(k,N) =
1

1− δ
max
b

{
g(λ̂k,N , b) + δF (λ̂k,Nb)∆(k,N)

}
, (3)



where

∆(k,N) := λ̂k,NU(k + 1, N + 1) + (1− λ̂k,N )U(k,N + 1)− U(k,N). (4)

Intuitively, ∆(k,N) indicates the advertiser’s value for the information she
obtains by observing the outcome of one additional impression. We take the
derivative of the expression in Equation (3) with respect to z = λ̂k,nb to compute
the optimal bid. Using (1), this derivative can be written as:

∂(g(λ̂k,N , b) + δF (λ̂k,Nb)∆(k,N))
∂z

= (vλ̂k,N − z)f(z) + δf(z)∆(k,N),

= f(z)(vλ̂k,N + δ∆(k,N)− z).

Given that f(z) is non-negative, the root of the linear term in the paranthesis
satisfies the second-order condition and is therefore a maximizer of the function.
Thus, the optimal bid of the advertiser can be written as:

b∗ = v +
δ

λ̂k,N
∆(k,N). (5)

This shows that the optimal bid of the advertiser is not the true value per
click v, but the value per click plus some additional term. This additional term
is proportional to the information value of one additional impression, and can
be expressed with a recurrence relation. In general, this recurrence is hard to
solve explicitly. However, here we prove that the optimal bid of the advertiser is
always greater than or equal to her value per click. Later, we will give a lower
bound on the optimal bid in the special case of uniform distributions.

Theorem 1. In the above model of repeated auctions, the optimal bid of the
advertiser in every state (k,N) is at least v.

Proof. By Equation (5), we need to prove that ∆(k,N) ≥ 0. In other words, we
need to show that the expected optimal revenue starting from the state (k,N)
(which we call scenario 1) is less than the optimal revenue when we first start
from (k,N), observe the outcome of one impression, and then proceed (we call
this scenario 2).2 We prove this inequality by analyzing the strategy for scenario
2 that simulates the optimal strategy of scenario 1. This gives a lower bound on
the optimal strategy in scenario 2.

To simulate the optimal strategy of scenario 1 in scenario 2, in each step we
take the optimal bid b of scenario 1, and submit a bid in scenario 2 that leads

2 Note that this statement is not trivial, since the additional information (the outcome
of one impression) is observed by both the advertiser and the auctioneer. While
the additional information enables the advertiser to make more informed decisions
to improve her utility, it also enables the auctioneer to allocate and price future
impressions more accurately. It is not clear a priori whether the latter effect helps
or hurts the advertiser.



to the same expected bid per impression. For example, in the first step (i.e.,
when we are in state (k,N) in scenario 1), the corresponding bid in scenario 2
is either bλ̂k,N/λ̂k+1,N+1 or bλ̂k,N/λ̂k,N+1, depending on whether the state is
(k + 1, N + 1) or (k,N + 1). The expected utility of the advertiser in scenario 2
in this step can be written as

λ̂k,Ng(λ̂k+1,N+1, bλ̂k,N/λ̂k+1,N+1) + (1− λ̂k,N )g(λ̂k,N+1, bλ̂k,N/λ̂k+1,N+1)

Using (1), this can be written as:

λ̂k,N

∫ λ̂k,Nb

0

(vλ̂k+1,N+1 − p)f(p)dp+ (1− λ̂k,N )
∫ λ̂k,Nb

0

(vλ̂k,N+1 − p)f(p)dp

=
∫ λ̂k,Nb

0

(
v(λ̂k,N λ̂k+1,N+1 + (1− λ̂k,N )λ̂k,N+1)− p

)
f(p)dp

Using the definition λ̂k,N as the posterior probability of getting a click con-
ditioned on having had k clicks out of the first N impressions, it is easy to show
that

λ̂k,N λ̂k+1,N+1 + (1− λ̂k,N )λ̂k,N+1 = λ̂k,N . (6)

Therefore, the expected utility in the first step in scenario 2 is equal to∫ λ̂k,Nb

0

(vλ̂k,N − p)f(p)dp = g(λ̂k,N , b),

which is the same as the expected utility in the first step in scenario 1. Similarly,
in any step the simulated strategy in scenario 2 obtains the same expected payoff
as in scenario 1. Thus, ∆(k,N) ≥ 0.

The above theorem only shows that the optimal bid of the advertiser is never
smaller than her true value. To show that this bid is sometimes strictly larger
than the value, we focus on the case of uniform distributions: We assume a
uniform prior Dλ = U [0, 1] on the clickability and a uniform price distribution
Dp = U [0, 1]. Straightforward calculations using the Bayes rule and the prior
Dλ shows that the posterior probability density for the clickability λ in a state
(k,N) is

(n+ 1)
(
n

k

)
λk(1− λ)N−k.

The expected value of λ given this posterior is λ̂k,N = k+1
N+2 , and the function

g(.) from (1) can be written as g(λ̂k,N , b) = λ̂2
k,Nb(v − b

2 ).

Theorem 2. In the above model of repeated auction, the optimal bid of the
advertiser in every state (k,N) is strictly larger than v. More specifically, we
have ∆(k,N) = Ω(N−2).



Proof (Proof Sketch). As in the proof of Theorem 1, we need to bound the
difference between the optimal expected utility of scenarios 1 and 2. Again, we
do this by taking the optimal strategy in scenario 1, and simulating it in scenario
2. Unlike the proof of Theorem 1, we simulate a strategy that submits a bid of
b in scenario 1 by submitting the same bid in scenario 2. First, notice that with
this strategy, the probability of winning the first auction in scenario 2 can be
written as

λ̂k,NF (bλ̂k+1,N+1)+(1−λ̂k,N )F (bλ̂k,N+1) = (λ̂k,N λ̂k+1,N+1+(1−λ̂k,N )λ̂k,N+1)b

Using (6), the above probability is equal to λ̂k,Nb, which is the same as the
probability of winning in scenario 1. This ensures that the simulated strategy
in scenario 2 has the same branching probabilities as the optimal strategy in
scenario 1. Next, we need to bound the difference between the expected utility
of one auction in the two scenarios. Here we only do this for the first auction.
The inequality for the other auctions can be proved similarly. The difference
between the expected utilities of the advertiser in the first auction in the two
scenarios can be written as:

λ̂k,Ng(λ̂k+1,N+1, b) + (1− λ̂k,N )g(λ̂k,N+1, b)− g(λ̂k,N , b)

= b(v − b

2
)

(
λ̂k,N λ̂

2
k+1,N+1 + (1− λ̂k,N )λ̂2

k,N+1 − λ̂2
k,N

)

= b(v − b

2
)

(( k + 1
N + 2

)( k + 2
N + 3

)2 +
(
1− k + 1

N + 2
)( k + 1
N + 3

)2 − ( k + 1
N + 2

)2)

= b(v − b

2
)
(k + 1)(N − k + 1)
(N + 2)2(N + 3)2

= Ω(N−2).

4 Value of learning

Given the result in the previous section, we can define the value of learning of
an advertiser as the difference between the optimal bid of the advertiser and
her value-per-click. More formally, the value of learning is the difference be-
tween the Gittins index in the Markov Decision Process (MDP) defined based
on the auction. If we could compute these indices, we could simply design an
alternative auction mechanism that allocates according to these indices, thereby
achieving the optimal MDP solution and eliminating the incentive to overbid.
Unfortunately, Gittins indices are quite hard to compute.

As a practical alternative, we can use proxies for the value of learning that are
easy to compute. Perhaps the simplest method for doing this is to take the value
of learning of an advertiser to be proportional to the variance of our estimate of
the clickability of this advertiser. This has the advantage that it can be easily
computed, and gives a boost to ads that we currently do not have an accurate
estimate of its clickability.



The strongest theoretical evidence that taking the value of learning of an ad
to be proportional to the variance of its clickability estimate and then sorting the
ads based on their expected value per impression plus their value of learning leads
to close-to-optimal outcomes comes from the literature on the multi-armed ban-
dits problem. Multi-armed bandits algorithms based Upper Confidence Bounds
are shown to achieve asymptotically optimal regrets [3, 4]. These algorithms in
each iteration pick the arm that has the maximum expected value plus an addi-
tional factor that is close to the variance of the performance of the arm so far.
The literature on multi-armed bandits is a vast literature and we do not intend
to add yet another algorithm to this literature. Instead, we describe a practi-
cal method for incorporating the value of learning in sponsored search auctions,
and analyze its revenue and efficiency impacts through simulations with real
advertisers’ bid and click-through rate data.

A practical value-of-learning mechanism. Recall that in sponsored search, a se-
quence of m slots need to be allocated to the advertisers. The position bias of
slot j is denoted by γj . At any point in time, the history for each ad consists
of the number of times this advertiser is shown in each slot, and the number of
such instances that have lead to clicks. We can compute the cumulative expected
clicks eci of advertiser i as the sum of the position biases of the positions this
ad is shown so far. This is essentially the number of clicks we would expect this
ad to receive, if it had a clickability of 1. Our estimate of the clickability is then

λ̂i =
ci
eci

, (7)

where ci is the total number of clicks advertiser i has received. It is not hard to
show that in a reasonable Bayesian setting (e.g., uniform priors), the variance of

this estimate is of the order of
√

λ̂i

eci
. Therefore, we define the value of learning

for this advertiser as θ̂ibi, where

θ̂i = C

√
λ̂i
eci

(8)

for a constant C. We will change the value of C in our simulations to study the
effects of increaseing the value of learning on the efficiency of and revenue of the
auctions. The mechanism computes a score si for each advertiser as follows:

si = bi(λ̂i + θ̂i). (9)

It then sorts the advertisers in decreasing order of their scores, allocates the
i’th position to the i’th advertiser in this order, and in the event of a click,
charges this advertiser an amount equal to

pi =
bi+1(λ̂i+1 + θ̂i+1)

(λ̂i + θ̂i)
(10)

Note that this value is never greater than the bid of the advertiser.



5 Revenue of auctions with value of learning

Intuitively, one might think that exploration in repeated sponsored search auc-
tions is a costly activity that is done in order to achieve a better outcome in
the long run. In fact, many of the exploration-exploitation algorithms based on
the ε-greedy algorithm for the multi-armed bandits problem give out exploration
impressions to the advertisers for free [7]. However, we will show experimentally
in the next section that the mechanism in the previous section can lead to a
higher revenue even in the short term. In this section, we explain the theoretical
intuition behind this result.

In auction theory [13], it is known that giving an advantage to weaker bidders
(e.g., minority-owned firms participating in spectrum auctions [5]) can increase
the revenue by leveling the playing field between competing bidders. Here, also,
the value of learning added to each advertiser’s bid is inversely proportional
to the square root of the number of times this ad has been clicked on. This
means that an ad that is typically in a lower position has a higher value of
learning, and this can increase the price that the advertisers in higher positions
pay. A formal proof of this fact in the model with repeated auctions is out of
reach, as it would require analyzing optimal strategies in a Bayesian multi-player
version of the model studied in Section 3. Instead, we ignore incentives resulting
from learning by studying a one-shot auction, and then prove that the GSP-like
mechanism that allocates slots to bidders in decreasing order of (λi + θi)vi has
a minimal envy-free equilibrium similar to the VCG-equivalent equilibria of [8,
17]. Furthermore, the revenue of this equilibrium at the λi, θi values computed
in the previous section is typically larger than the similar revenue when θi’s are
zero. The result, whose proof is omitted here, can be stated as follows.

Theorem 3. Consider a multi-slot auction between n bidders. Assume that the
i’th bidder has a value of viλ̂iγj for being placed in slot j. The mechanism
Mθ sorts the advertisers based on their (λ̂i + θi)bi, allocates the i’th slot to
the i’th advertiser in this order (which we call advertiser i), and charges her
(λ̂i+1+θi+1)bi+1λ̂iγi

λ̂i+θi
in expectation. This mechanism has a minimal envy-free equi-

librium whose revenue is denoted by R(θ). Furthermore, let λ̂i and θ̂i be the val-
ues calculated in (7) and (8) and assume that the ordering of the values (λ̂i+θ̂i)vi
is the same as the ordering of the values λ̂ivi and that the historical number of
clicks ci of a bidder in a higher slot is higher. Then we have R(θ̂) > R(0).

The main assumption of this theorem (apart from restricting equilibrium
analysis to a 1-shot game) is that the ordering of the advertisers in decreasing
order of (λ̂i + θ̂i)vi is the same as their ordering in decreasing order of λ̂ivi,
and their ordering in decreasing order of ci. Since θi’s are typically small and
higher slots get more clicks, this assumption is often true, except for rare cases
where the mechanism reverses the ordering to do some exploration. The above
theorem guarantees that in normal cases, the mechanism with value of learning
has a higher revenue. Intuitively, this revenue increase can more than make up



for the occasional revenue loss due to exploration. This is why in the simulations
in the next section we will see that incorporating value of learning leads to a
considerable increase in revenue, averaged over thousands of auctions.

6 Simulation Results

In this section we provide simulation results to illustrate the performance of
incorporating value of learning in the auction mechanism when applied in a
popular search engine like Yahoo! Search. We collect a representative sample of
sponsored search results from the Yahoo! search log. For each search sample, we
collect the position bias for each position due to the specific page layout used.
For each ad, we also collect the bid and its estimated clickability at the time of
sampling.

For the purpose of conducting the simulation study, we assume that the
ads in each search in the dataset are unique, i.e., the same ad cannot appear
across multiple sample searches, hence its clickability estimate only depend on
its own history. We also assume that the page layout remains the same, i.e., the
same position bias as in the search log will be used to simulate click event and
efficiency. We use the estimated clickability of each ad at the time of sampling as
their true clickability. The simulation is initialized by simulating a small number
of impressions using the assumed true clickability of each ad, and the position
effect is based on the one at position one. Then the initial clickability estimate
of each ad is computed based on the simulated clicks during those impressions.

After the initialization stage, we simulated the sample searches for 5,000
episodes. Each episode involves simulating all sample searches once. For each
sample search s, the value of learning term θ̂s,i for ad i was determined based
on the current clickability estimate λ̂s,i and cumulative expected clicks as in (8).
The price and rank of each ad was determined by the GSP algorithm using the
ranking score (9) and pricing equation (10). The number of clicks for each ad was
simulated using the probability of click λs,iγs,j , where j is the slot occupied by
ad i. Then we updated the clickability estimate for all ads after every simulated
search according to (7). After each episode, we computed the total revenue and
the total efficiency across the sample searches based on the simulated clicks, the
PPC of the ads that were clicked, and their bids. Specifically, the revenue R and
efficiency E at each episode is defined as

R =
∑
s,i

ps,ics,i, E =
∑
s,i

bs,iλs,iγs,j ,

where ps,i, cs,i, bs,i, λs,i, denote the price per click, number of clicks, bid, and
clickability of ad i in search s respectively, and γs,j denote the position effect of
the slot (j) occupied by ad i in search s. Note that in computing the efficiency,
we made the simplifying assumption that the bid bs,i does not change over time,
and it is the same as the value per click for the advertiser. Nevertheless, we
believe that E serves as a good proxy for the true efficiency of the algorithm
under investigation.



We simulated the auction and click behavior for a range of C to illustrate the
effect of imposing different degree of learning in the mechanism. The case C = 0
corresponds to the case when there is no value of learning included in the auction.
The higher C is, the more impact value of learning has on price and ranking, and
hence revenue and efficiency. Figure 1 (a) shows the moving average of the total
revenue generated over the duration of the simulation, and figure 1 (b) shows the
moving average of the total efficiency. The moving average window used in the
graphs has width 400. As can be seen in the figures, the revenue is consistently
higher when value of learning is used in the auction. Furthermore, efficiency is
higher in the transient when the appropriate value of learning (C = 2) is used.
It should be noticed that when C is large (C = 6), both the transient and final
efficiency can suffer as too much exploration is being done.

We also simulated the case when not all ads in each sample search are shown
in every auction by reducing the number of slots that can be shown in each
auction m to five (in Yahoo! search this can be as high as twelve). In other
words, when the number of ads available is more than five, the algorithm is
forced to select only five ads to show, with the rest not getting any exposure
at all. As can be seen in Figure 2, the power of incorporating value of learning
in the auction is more evident in this case. The efficiency of the auction with
C other than zero is much higher than when C is zero. This is because the set
of ads that are shown are fixed very early as other ads with high clickability
are never given a chance to prove themselves. The revenue is also higher when
C is non-zero, due to the price effect of value of learning as well as improved
efficiency.

(a) revenue (b) efficiency

Fig. 1. Moving average of revenue and efficiency for different setting of C.
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