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In second-price auctions, we find that improved targeting via enhanced information disclosure decreases

Q1

4
revenue when there are two bidders and increases revenue if there are at least four symmetric bidders 5
with values drawn from a distribution with a monotone hazard rate. With asymmetries, improved targeting 6
increases revenue if the most frequent winner wins less than 30.4% of the time under a model in which shares 7
are well defined, but can decrease revenue otherwise. We derive analogous results for position auctions. 8
Finally, we show that revenue can vary nonmonotonically with the number of bidders who are able to take 9
advantage of improved targeting. 10
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1. INTRODUCTION 18

There has been substantial concern in the Internet advertising business over whether 19
improvements in targeting technology will reduce revenue from online advertising. 20
The intuition for these concerns runs as follows. Improvements in targeting enable 21
advertisers to more accurately identify consumers’ interests. If a consumer’s interests 22
are so accurately identified that advertisers know there is only one product that this 23
consumer would ever buy, this process could result in only a single advertiser who is 24
willing to advertise to this consumer. This means that this advertiser could conceivably 25
bid without competition. A more nuanced version of this argument relies on a quantity 26
effect. Since advertisers will no longer purchase ads that reach consumers who are not 27
interested in their products, the total demand for advertisements will go down. If the 28
supply of advertising opportunities remains unchanged, revenue from ads will decline. 29

The question of whether enhanced targeting increases revenue is important because 30
of two powerful trends. First, media consumption is moving online, and print newspa- 31
pers have waned. The survival of much of the existing media appears to depend on the 32
ability to monetize online content with advertising. Second, Internet advertising is in- 33
creasingly using sophisticated targeting. Thus, the likely survival of existing publishers 34
turns on whether enhanced targeting will increase advertising revenue. Furthermore, 35
since advertising exchanges typically take a constant fraction of a publisher’s revenue, 36
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there is a direct correspondence between whether revenue increases for intermediaries37
and for publishers.38

The argument that improvements in targeting will result in only a single relevant39
advertiser for each consumer is likely misplaced. The argument assumes that the pur-40
chase of the customer is a foregone conclusion, which ignores one of the main purposes41
of advertising: to influence the consumer’s choice. While there is some advertising that42
is informational in nature, alerting consumers to the existence of a product and its43
features, the majority of advertising is intended to sway the consumers’ perception of44
the product. This kind of advertising is commonly called emotional branding, and it is45
the most common kind by revenue. Coca-Cola advertises extensively to people already46
aware of its products. Similarly, how many American television watchers are unaware47
of Proctor and Gamble’s Tide product?48

The fact that the demand for advertisements to an individual consumer will not49
decline to one does not invalidate the argument that targeting might reduce revenue,50
however. Enhanced targeting will typically increase advertiser welfare by making ad-51
vertising more effective, while reducing competition through specialization.1 The effect52
of improving targeting in online advertising is exactly the reverse of pure bundling for53
a monopolist, in which the monopolist requires consumers to purchase a bundle of54
objects or none at all. Targeting permits advertisers to distinguish unlike consumers,55
whereas pure bundling, or the lack of targeting, forces advertisers to treat different56
types of consumers as if they were the same.57

Thus, to analyze whether improvements in targeting technology increase revenue58
from auctions for advertisements, we can analyze whether enabling advertisers to59
learn more detailed information about their value before bidding would increase rev-60
enue from the auction. In particular, under targeting, we assume that the targeting61
information enables advertisers to learn their exact value for advertising to a consumer62
before deciding how much to bid. By contrast, when advertisers are unable to target,63
they only know that their value will be a random draw from some distribution, the dis-64
tribution reflecting the different values that the advertisers might place on advertising65
to different types of consumers. We compare a seller’s expected revenue from auctions66
under these two different scenarios.67

Throughout, we consider a model in which bidders have private values and bidders’68
values are independently distributed. While this is not the only possible modeling69
choice, it is a natural one. There is empirical evidence that there is little correlation70
in bidder values within auctions on Microsoft’s Ad Exchange, which Celis et al. [2011]71
indicate implies that “bidder valuations are private, driven by idiosyncratic match72
quality, rather than a common component.” Furthermore, if there is a common com-73
ponent to bidders’ values that is not known and the bidders have private values that74
are independent conditional on the common value, then the results of this article for75
the zero reserve price will continue to hold since the results are attained for each76
realization of the common component.277

We also frequently make use of the standard hazard rate condition on the cumu-78
lative distribution of the buyers’ values. Although this assumption is not completely79
innocuous, it is satisfied by many distributions frequently encountered in empirical80
studies.81

1Bergemann and Bonatti [2011] and Levin and Milgrom [2010] also note that such a trade-off is likely to
arise as a result of improved targeting.
2In addition, we know from Milgrom and Weber [1982] that if there is a common component to bidder values,
then the seller has an incentive to reveal this information when bidders are symmetric. Abraham et al.
[2014] further discuss when information asymmetries in common-value auctions can lead to revenue loss.
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In this environment, when advertisements are being sold via standard second-price 82
auctions, we first demonstrate a result analogous to that in Board [2009], Ganuza and 83
Penalva [2010], and Palfrey [1983], which illustrates that targeting decreases revenues 84
when there are two bidders even if there are asymmetries in the distributions of the 85
bidders’ values. We next show that when bidders’ values are drawn from identical dis- 86
tributions, then improved targeting has an ambiguous effect on revenue when there 87
are three bidders, but improved targeting increases revenue if there are at least four 88
bidders. These results are virtually unaffected by the possibility that a seller can set 89
reserve prices. Finally, we address the question of what happens when the bidders’ val- 90
ues are drawn from different distributions. Here, we find that if the strongest firm wins 91
the auction less than 30.4% of the time, then improved targeting increases revenue, but 92
targeting can reduce revenue when the two strongest bidders win a disproportionate 93
percentage of the time, at least under a particular model of bidder values in which 94
shares are well defined.3 95

While standard second-price auctions for a single advertising opportunity are used 96
by most publishers, we also consider the possibility of position auctions, as these are 97
frequently used by search engines as well as a smaller number of publishers. We first 98
present a new characterization of the properties of equilibria in generalized second- 99
price auctions when buyers have private information about their own values. We then 100
use these results to compare revenue under targeting and bundling in position auctions. 101
Here, we find that targeting unambiguously decreases revenue when there are a small 102
number of bidders, increases revenue when there are a large number of bidders, and has 103
an ambiguous effect on revenue when there are an intermediate number of bidders. 104
When there are an intermediate number of bidders, improved targeting increases 105
revenue if and only if the click-through rates of the top positions are sufficiently large 106
compared to the click-through rates of the lower positions. 107

Finally, we address the question of how improved targeting affects revenue when only 108
some advertisers are able to make use of the targeting information. In this setting, we 109
show that, even with symmetric bidders, it could be the case that a seller’s revenue 110
may vary nonmonotonically with the number of bidders who are able to make use 111
of the targeting information. That is, the seller may be indifferent between targeting 112
and bundling when only one bidder can target, prefer targeting to bundling when two 113
bidders can target, and prefer bundling to targeting when three bidders can target. 114
We also illustrate how improved targeting affects revenue when there is exactly one 115
bidder who can make use of the targeting information. We find that this decreases 116
revenue when the strongest bidder is making use of the targeting information, increases 117
revenue when the weaker bidders are making use of the targeting information, and 118
has an ambiguous effect for bidders of intermediate strength. 119

Our article relates to two distinct strands of literature. First, our article relates to 120
the literature on whether a mechanism designer should provide information to bidders 121
in a private-value auction that would better help them assess their values for an ob- 122
ject. Here, Fu et al. [2012] provide examples that illustrate that improving targeting 123
may decrease revenue in a private-value auction and Ganuza [2004] illustrates that an 124
auctioneer may have an incentive to release less than full information to the bidders 125
when the auctioneer has the ability to release partial information. Bergemann and 126
Valimaki [2006] consider the optimal information structure in a joint design problem 127
in which there may be a direct tie between the information that the seller discloses 128

3In particular, we work with a model in which firms have many products, but in any particular auction,
a firm can only advertise its best product, and the firm’s value for advertising a particular product is
independent and identically distributed. In this model, each firm’s probability of winning the auction (share)
is proportional to the number of products that the firm has.
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and the mechanism that the seller then uses to sell the object. Eső and Szentes [2007]129
address the question of how much information the mechanism designer should provide130
under the optimal mechanism, which may possibly involve charging the bidders in the131
auction for providing the information. de Cornière and de Nijs [2016] consider ques-132
tions related to how information disclosure affects the ultimate prices that advertisers133
would charge for their products. Finally, Bhawalkar et al. [2014] analyze the value134
of targeting data to advertisers, Ganuza and Penalva [2010] provide general meth-135
ods of classifying the informativeness of signals to bidders in private-value auctions,136
and Tadelis and Zettelmeyer [2015] conduct field experiments analyzing the effect of137
information disclosure on wholesale auto auctions.4138

The second related strand of literature is work analyzing when sellers would want139
to bundle goods and sell them together. Bakos and Brynjolfsson [1999] and Fang and140
Norman [2006] both study a standard bundling framework in which a monopolist141
considers selling bundles of goods to buyers without using auctions. Adams and Yellen142
[1976], Jehiel et al. [2007], and McAfee et al. [1989] study mixed bundling, in which a143
monopolist offers buyers both the option of buying various goods individually and the144
option of buying multiple goods at the same time, possibly for a discount. Chakraborty145
[1999] studies a model in which a seller sells two objects via an auction and the146
seller must decide whether to sell them separately or via bundling. Hart and Nisan147
[2012] study how a seller’s revenue from selling two objects separately or from only148
offering to sell the objects together compares to the seller’s revenue from an optimal149
mechanism, which may not involve either of these approaches.5 McAfee and McMillan150
[1988] and Vincent and Manelli [2007] study questions related to when a monopolist’s151
optimal mechanism involves take-it-or-leave-it mechanisms that set a price for each152
possible collection of goods. Finally, Armstrong [2013] studies questions related to153
optimal bundling with multiple sellers.154

While these papers are all interesting, they all differ from our work in significant155
ways. Our article differs from the work on bundling goods in that very few of these156
papers consider models of bundling in an auction setting. Our article also differs from157
the literature on information provision by a mechanism designer in that these papers158
do not attempt to derive the detailed results in this article on how the number and159
sizes of the various bidders affects the suitability of bundling compared to targeting160
for a fixed-auction format. Furthermore, none of these papers considers the problem of161
whether to sell goods using targeting or bundling when the seller must use a position162
auction, and these papers also do not consider scenarios in which some of the buyers163
buy objects using bundling while other buyers buy the objects separately. Our article164
thus makes a number of new contributions to the literature on information provision165
by a mechanism designer and bundling.166

2. THE MODEL167

Each buyer i ∈ {1, 2, . . . , n} has a value vi that is an independent draw from the cumu-168
lative distribution function Fi(v) with finite mean and variance, and a corresponding169
continuous density fi(v) on its support [0, vi), where vi may be infinite. These bid-170
ders compete in an auction, and bid either before their value is realized (bundling) or171

4In addition, Ghosh et al. [2015] analyze incentives to share information when there is a risk of information
leakage that enables an advertiser to target a user on a different publisher, Johnson and Myatt [2006] analyze
a framework for considering questions related to general transformations in buyer demand, and Bergemann
and Valimaki [2006] further survey the literature on information provision in mechanism design.
5In addition, Yao [2015] studies bundling in the context of reducing the k-item n-bidder auction with additive
valuations to k-item 1-bidder auctions.
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after their value is realized (targeting). The model also applies to situations in which 172
bidders do not learn their exact values under targeting, but instead learn estimates 173
vi that are correct in expectation. Each bidder i’s expected value under bundling is 174∫ ∞

0 v fi(v) dv = ∫ ∞
0 1 − Fi(v) dv. For convenience, we name the bidders in decreasing 175

order of their expected values; thus,
∫ ∞

0 1 − Fi(v) dv ≥ ∫ ∞
0 1 − Fi+1(v) dv for all i. 176

Throughout this article, we consider two possible auction formats in which the 177
bidders may compete. First, we consider standard second-price auctions, in which 178
there is one object for sale and the bidder who makes the highest bid wins the 179
object and pays the second-highest bid. The results with symmetric buyers for 180
this format will also extend to first-price auctions by the revenue equivalence 181
theorem. 182

The second auction format that we consider is a position auction. Position auctions 183
differ from the setting considered earlier in that there are s positions, where s is a 184
positive integer satisfying 1 ≤ s < n. Each position k ≤ s has a click-through rate 185
ck > 0, where ck is nonincreasing in k for all k ≤ s. Bidders compete by submitting bids 186
per clicks. The top position then goes to the bidder with the highest bid, the second 187
position goes to the bidder with the second-highest bid, and so on, with ties broken 188
randomly. 189

We consider two methods for setting prices in position auctions. The first pricing 190
method that we consider is a generalized second-price (GSP) auction. In this setting, 191
the kth-highest bidder pays a price per click that is equal to the bid submitted by the 192
k+ 1th-highest bidder. Thus, if v(k) denotes the value of the kth-highest bidder and b(k+1) 193
denotes the bid submitted by the k+ 1th-highest bidder, then the final payoff of the kth- 194
highest bidder is ck(v(k) − b(k+1)). This is the same basic model of GSP auctions without 195
clickability of ads that is considered in Edelman et al. [2007] and Varian [2007]. 196

The second possibility that we consider is the Vickrey-Clarke-Groves (VCG) mecha- 197
nism. Under VCG pricing, each advertiser pays a total cost equal to the externality that 198
the advertiser imposes on other bidders by bidding in the auction. Thus, under VCG 199
pricing, the bidder who wins the kth position pays a total cost of

∑s
j=k(c j − c j+1)b( j+1) 200

and a total price per click equal to 1
ck

∑s
j=k(c j − c j+1)b( j+1), where we abuse notation by 201

letting cs+1 ≡ 0. 202
Finally, we also sometimes allow for reserve prices. If there is a reserve price of r, 203

then only bidders who bid at least r will be considered in the auction. Under standard 204
second-price auctions, if only one bidder bids more than the reserve, then this bidder 205
pays r for the object. Under GSP auctions, if there are only k ≤ s bidders who bid more 206
than the reserve price, then the payoffs of the first k−1 of these bidders are unaffected 207
by the reserve price, but the kth-highest bidder pays a price of r per click and obtains a 208
payoff of ck(v(k) − r). 209

Finally, under position auctions using VCG pricing, we introduce reserve prices in 210
the following manner. If at least s + 1 bidders submit a bid in the auction that is 211
greater than the reserve price, then the reserve price has no effect on the outcome of 212
the auction. If K ≤ s bidders submit a bid in the auction that is greater than the reserve 213
price, then only the bidders who submitted a bid greater than the reserve price have 214
their ads shown, and these bidders pay a price per click equal to the price that they 215
would pay if there were exactly K positions available and there were an additional 216
bidder who submitted a bid equal to the reserve price. Hummel [2016] has noted in 217
a more general setting that this method of introducing reserve prices into the VCG 218
mechanism both preserves the incentive for advertisers to bid truthfully and ensures 219
that any advertisers who have their ads shown pay a price per click that is greater 220
than or equal to the reserve price. 221
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3. SECOND-PRICE AUCTIONS WITHOUT RESERVE PRICES222

We begin by comparing bundling to targeting in a standard second-price auction setting223
with no reserve price. Throughout our analysis of second-price auctions, we assume224
that bidders follow their weakly dominant strategies of bidding their (expected) values.225
Thus, under bundling, all bidders bid their expected values, the bidder with the highest226
expected value wins and pays the second-highest bid, and the seller’s revenue is the227
second-highest expected value, or

∫ ∞
0 1 − F2(v) dv.228

Under targeting, bidders bid their exact values after learning their values, and the229
seller’s revenue is the second-highest realized value. The second-highest realized value230
is less than or equal to v when either the highest value is no greater than v or the231
highest value exceeds v but all other values are less than or equal v. Thus, if v(2)232
denotes the realization of the second-highest value, the distribution of this realization233
is given by234

Pr(v(2) ≤ v) =
n∏

j=1

Fj(v) +
n∑

j=1

(1 − Fj(v))
∏
i �= j

Fi(v) =
n∑

j=1

∏
i �= j

Fi(v) − (n − 1)
n∏

j=1

Fj(v).

From this, it follows that the difference between the seller’s expected revenue under235
targeting and bundling is236

�n =
∫ ∞

0
1 −

n∑
j=1

∏
i �= j

Fi(v) + (n − 1)
n∏

j=1

Fj(v) − (1 − F2(v)) dv

=
∫ ∞

0
F2(v) −

n∑
j=1

∏
i �= j

Fi(v) + (n − 1)
n∏

j=1

Fj(v) dv.

First, we illustrate that the insight in Ganuza and Penalva [2010] and Palfrey [1983]237
that the seller prefers bundling to targeting when there are two bidders extends to238
cases in which the values of the bidders are not drawn from identical distributions.239

THEOREM 3.1. Suppose that there are n = 2 bidders. Then, the seller prefers bundling240
to targeting.241

All proofs are in the appendix. Next, we consider cases in which the bidders’ values242
are drawn from the same distributions. When Fi(v) = F(v) for all v, the difference243
between the seller’s expected revenue under targeting and bundling is244

�n =
∫ ∞

0
F(v) − nFn−1(v) + (n − 1)Fn(v) dv.

Now, we use this expression for the difference between the seller’s expected revenue245
under targeting and bundling to show that the seller prefers targeting to bundling246
when there are n ≥ 4 bidders. Throughout the remainder of this article, we let f (v)247
denote the density corresponding to the cumulative distribution function F(v).248

When at least four values are independently drawn from the same distribution, the249
second-highest of these values will typically be higher than the average value under250
certain regularity conditions. This insight is useful in proving the following result.251

THEOREM 3.2. Suppose that Fi(v) = F(v) for all i, 1−F(v)
f (v) is nonincreasing in v through-252

out its support, and n ≥ 4. Then, the seller prefers targeting to bundling.253

Thus, in the symmetric case, when there are at least four bidders and the usual254
hazard rate condition is satisfied, targeting dominates bundling. The reason for this is255
that the second-highest realized value (the revenue under targeting) when there are256

ACM Transactions on Economics and Computation, Vol. 5, No. 1, Article 4, Publication date: September 2016.



TEAC0501-04 ACM-TRANSACTION September 22, 2016 8:19

When Does Improved Targeting Increase Revenue? 4:7

at least four bidders is greater than the average value of these bidders (the revenue 257
under bundling) as long as the distribution does not have fat tails. The possibility of 258
fat tails is ruled out by the hazard rate condition; thus, targeting dominates bundling 259
when there are n = 4 bidders in this case.6 260

Similarly, when there are three bidders, the second-highest value is the median value; 261
thus, the seller’s expected revenue under targeting is just the expectation of the median 262
value of three samples. The seller’s expected revenue under bundling is the expected 263
value of the bidders. Since the mean (expectation of the median of three samples) of 264
a given distribution is greater than the expectation of the median of three samples 265
(mean) if the density corresponding to that distribution is decreasing (increasing), we 266
obtain the following result. 267

THEOREM 3.3. Suppose that Fi(v) = F(v) for all i and there are n = 3 bidders. Then, 268
the seller prefers targeting to bundling if f (v) is nondecreasing in v (but not constant) 269
on its support, prefers bundling to targeting if f (v) is decreasing in v (but not constant) 270
on its support, and is indifferent between targeting and bundling if f (v) is constant on 271
its support. 272

In summary, when the buyers’ values are drawn from identical continuous distribu- 273
tions, the seller typically prefers targeting to bundling when there are four or more 274
bidders, while the seller prefers bundling to targeting when there are two bidders. The 275
seller’s exact preferences in the case in which there are three bidders depend on the 276
distribution, but since most natural distributions of values have a density f (v) that is 277
decreasing on most of its support, the seller is also likely to prefer bundling to targeting 278
when there are three bidders. 279

We conclude this section by noting when targeting would be preferred to bundling 280
in a model in which each bidder’s value is either equal to 0 or 1. This case is useful 281
to model scenarios under which an impression is either valuable to an advertiser 282
(when it converts) or not valuable (when the impression fails to convert), but there is 283
little heterogeneity in the value of an impression conditional on the impression being 284
valuable. This model is also important in that the worst-case analyses of many famous 285
problems, such as the secretary problem, achieve their worst case when under such a 286
distribution. 287

THEOREM 3.4. Suppose that there are n ≥ 3 bidders whose values are independent and 288
identically distributed draws from the Bernoulli distribution that takes on the value 1 289
with probability p. Then, there is some p∗(n) ∈ (0, 1) such that the seller prefers targeting 290
to bundling if and only if p > p∗(n). Furthermore, limn→∞ n2 p∗(n) = 2. 291

Theorem 3.4 indicates that, when buyers’ values are drawn from the same binomial 292
distribution, there are always some values of p for which the seller prefers targeting 293
to bundling, and there are also values of p for which the seller prefers bundling to 294
targeting. However, the seller is more likely to prefer targeting to bundling if p is 295
large, and in the limit as the number of players becomes large, the set of values of p for 296
which the seller prefers bundling to targeting becomes arbitrarily small. Intuitively, 297
this arises because of the following: when there are a large number of bidders, the 298
probability that there will be at least two bidders who have a value of 1 for the object 299
becomes arbitrarily close to 1, and the seller is fairly certain to obtain 1 unit of revenue 300
if the seller allows targeting. 301

6For any finite number of players, there exists a distribution with sufficiently fat tails such that the seller
prefers bundling to targeting. In particular, if each bidder’s value is a random draw from the lognormal
distribution with mean μ < 0 and variance σ 2 = −2μ, then, for any n, one can show that for sufficiently
negative μ, the seller prefers bundling to targeting.
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4. RESERVE PRICES302

This section illustrates that, with the exception of the case in which there is one bidder,303
in symmetric settings, appropriate reserve prices favor targeting. Thus, when there are304
four or more bidders, targeting with reserve prices dominates bundling with reserve305
prices when bidder values are drawn from a distribution with a monotone hazard rate.306
However, we also show that reserve prices are not enough to overturn the conclusion307
that bundling is preferred to targeting when there are two bidders or the conclusion308
that there is no general result as to whether targeting is preferred to bundling when309
there are three bidders.310

With symmetric bidders, the only case in which reserve prices make bundling rel-311
atively more favorable is the case in which there is only one bidder. Without reserve312
prices, the seller’s revenue when there is only one bidder is zero regardless of whether313
the seller uses targeting or bundling. However, when the seller uses reserve prices, the314
seller can extract the entire surplus under bundling by setting a reserve equal to the315
bidder’s expected value. By contrast, the seller cannot extract the entire surplus under316
targeting; thus, the seller will prefer bundling to targeting when there is one buyer317
and the seller can set a reserve price.318

Although the introduction of reserve prices makes targeting relatively less favorable319
compared to bundling in the case in which there is only one bidder, when there are320
multiple bidders whose values are all drawn from the same distribution, the introduc-321
tion of reserve prices can only make the situation better for targeting. Adding reserve322
prices does not improve the seller’s revenue under bundling since the seller’s revenue323
is equal to the bidders’ expected values under bundling regardless of whether the seller324
uses a reserve price. However, reserve prices do increase the revenue from targeting.325
Nonetheless, it is still the case that the seller typically prefers bundling to targeting326
when there are two symmetric bidders.327

THEOREM 4.1. Suppose that there are n = 2 bidders, F1(v) = F2(v) = F(v), and the328
density f (v) is nonincreasing in v. Then, the seller prefers bundling to targeting with329
the optimal reserve.330

In addition to bundling still typically being optimal with two bidders, it is also the331
case that the seller will sometimes want to use bundling with three bidders. Although332
the seller now prefers targeting to bundling in the case in which the buyers’ values are333
drawn from a uniform distribution, the seller still prefers bundling to targeting when334
the buyers’ values are drawn from an exponential distribution, even if the seller uses335
the optimal reserve price.336

OBSERVATION 4.1. Suppose that there are n = 3 bidders and Fi(v) = F(v) for all i.337
Then, the seller prefers targeting to bundling when the bidders’ values are drawn from338
the uniform distribution, but the seller prefers bundling to targeting when the bidders’339
values are drawn from the exponential distribution.340

5. ASYMMETRIC BIDDERS WITHOUT RESERVE PRICES341

We now consider a scenario in which the values of the bidders are not all drawn from342
the same distribution. In particular, we consider a scenario in which there is some343
cumulative distribution function F(v) and some values α1, . . . , αn satisfying α1 ≥ α2 ≥344
. . . ≥ αn > 0 such that Fi(v) = F(v)αi for all i. This model has practical relevance345
because a firm typically has many products that it might wish to advertise, but in346
any particular auction, the firm will only have an opportunity to advertise its best347
product. If the firm’s value for advertising a particular product is an independent and348
identically distributed draw from the distribution F(v), then the value of the firm’s349
best product is a random draw from the distribution F(v)αi if the firm has αi products.350
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This formulation is also useful because the values of αi have a natural interpretation 351
in terms of the bidders’ probabilities of winning the auction. If A ≡ ∑n

j=1 α j , then the 352

probability that bidder j has the highest value is 353

Pr(v j > vi ∀ i �= j) =
∫ ∞

0

∏
i �= j

Fi(v)α j F(v)α j−1 f (v) dv = α j

A
.

We now present a result that expresses the circumstances under which targeting is 354
preferred to bundling as a function of the probabilities with which the bidders have the 355
highest values. 356

LEMMA 5.1. Suppose that Fi(v) = F(v)αi for some α1, . . . , αn satisfying α1 ≥ α2 ≥ · · · ≥ 357

αn > 0, α2 (and A) are sufficiently large, n ≥ 3, and 1−F(v)
f (v) is nonincreasing in v. Then, 358

if α2
A ≤ (1 − α1

A )(1 − α2
A )

1−α1/A
α2/A , the seller prefers targeting to bundling. 359

The inequality in Lemma 5.1 is a function only of two variables, α1
A and α2

A . We now 360
seek to show when this inequality is satisfied given that α1 and α2 must meet the 361
constraints 0 ≤ α2

A ≤ min{ α1
A , 1 − α1

A }. 362

THEOREM 5.2. The inequality in Lemma 5.1 is satisfied if α1
A ≤ 0.30366. If α1

A > 363

0.30366, there exists some y∗ ∈ (0, min{ α1
A , 1 − α1

A }) such that this inequality is satisfied 364
if and only if α2

A ≤ y∗. Furthermore, if this key value of y∗ is taken as a function of α1
A , 365

y∗( α1
A )/(1 − α1

A ) is increasing in α1
A and as α1

A → 1, y∗( α1
A )/(1 − α1

A ) → 1. 366

This result indicates that, when α1
A ≤ 0.30366 and the strongest firm wins the auc- 367

tion less than 30.366% of the time, there is automatically enough competition in the 368
auction that targeting will increase revenue. When the largest firm is larger than this, 369
then improved targeting will increase revenue if and only if the second-largest firm is 370
sufficiently small and there is enough competition from other firms. 371

Interestingly, the result that y∗( α1
A )/(1 − α1

A ) is increasing in α1
A indicates that, as the 372

strongest firm becomes more dominant, the second-strongest firm can be relatively 373
stronger compared to the weaker firms without changing the result that targeting im- 374
proves revenue. Furthermore, as α1

A → 1 and the strongest firm becomes arbitrarily 375

strong, y∗( α1
A )/(1 − α1

A ) → 1, indicating that the second-strongest firm can also become 376
arbitrarily strong relative to the weaker firms and still ensure that targeting improves 377
revenue. This makes sense intuitively. When the strongest firm becomes more domi- 378
nant, the expected second price becomes lower, and there is a greater need to allow 379
targeting to increase the chances that the strongest firm will be given a substantial 380
challenge.7 381

6. POSITION AUCTIONS 382

Having discussed whether targeting is preferred to bundling in the case of a single- 383
object auction, we now consider how the results would be affected by using position 384
auctions. We focus on the case in which Fi(v) = F(v) for all i, and F(v) has compact 385
support [0, v]. Throughout, we also focus on symmetric pure-strategy equilibria. 386

In this symmetric case, if the seller uses bundling and all bidders bid before learning 387
the realizations of their values, then all bidders have an expected value for a click that 388
equals

∫ ∞
0 1 − F(v) dv, and the unique symmetric pure-strategy equilibrium is for all 389

7These results all also hold regardless of whether the bidders know the distribution from which other bidders’
values are drawn. Regardless of whether bidders know this distribution, a bidder’s dominant strategy is to
bid truthfully; this is all that is needed to derive the results in this section.
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bidders to bid this expected value regardless of whether we use GSP or VCG pricing.390
Total revenue for the seller under bundling is therefore equal to

∑s
k=1 ck

∫ ∞
0 1− F(v) dv.391

Next, we consider the case in which bidders bid after learning the realizations of their392
values (targeting). We assume that when bidders bid, they know their own values but393
not the bids or the values of any of the other bidders. The assumption that bidders do394
not know the values of the other bidders is logical because, in practice, there are myriad395
dimensions in which auctions will differ from one another. There will be auctions for396
users of different ages, genders, or geographical areas, auctions that take place on397
different times of day, days of the week, or months of the year, auctions that take place398
on different devices such as mobile, tablet, or desktop, and so on. The myriad possible399
targeting dimensions means that it is unlikely that any exact auction will ever repeat400
itself; thus, bidders are unlikely to know the other bidders’ exact values at the time401
that they bid in an auction.402

We first address the question of when there exists an equilibrium to this game under403
GSP when there is a reserve price r. In addressing this question, we make the sim-404
plifying assumption that bidders are restricted to making bids in discrete increments405
of ε for some small ε > 0. This assumption is realistic in situations in which bidders406
cannot adjust their bids by less than some very small amount (such as a small fraction407
of a penny). Under this assumption, we obtain the following result.408

LEMMA 6.1. If bidders must make bids in discrete increments, then there exists a pure-409
strategy equilibrium in GSP auctions in which each bidder i with value v ≥ r follows410
a strategy of making some bid bi(v) ∈ [r, vi] that depends only on the bidder’s value v.411
Moreover, in this equilibrium, it is necessarily the case that bi(v) must be nondecreasing412
in v for all i, and any equilibrium must be equivalent to a pure-strategy equilibrium.413

This result illustrates that, even in the asymmetric model, there exists a monotonic414
equilibrium in pure strategies. It is worth noting that this result can also be extended415
to cases in which the ads have different quality scores. In some GSP auctions, each416
advertiser i is ranked in part by the advertiser’s quality score γi which reflects the417
overall likelihood that users will want to click on bidder i’s ad. In these auctions, a418
bidder with the kth-highest value of γibi obtains the kth position and pays a price-per-419
click equal to γ(k+1)b(k+1)/γ(k), where b(k+1) and γ(k+1) denote the bid and quality score of420
the bidder with the k + 1th-highest value of γibi. Nothing in the overall proof strategy421
used to prove this result requires the assumption that the ads have the same quality422
scores; thus, a substantively identical proof can be used to show that there also exists423
a pure-strategy equilibrium in monotonic strategies in an analogous model in which424
ads have different quality scores.425

Next, we consider the case in which the players’ values are all drawn from the same426
distribution. In this case, we can go further by noting that there exists a symmetric427
equilibrium of the form given in the previous theorem. In analyzing the symmetric428
case, we let v denote the upper bound of the support of the distribution of the players’429
values.430

LEMMA 6.2. Suppose that Fi(v) = F(v) for all i and bidders must make bids in discrete431
increments. Then, there exists a symmetric pure-strategy equilibrium in GSP auctions432
in which each bidder i with value v ≥ r follows the same bidding strategy b(v) ∈ [r, v]433
that depends only on the bidder’s value v. Moreover, in this equilibrium, it is necessarily434
the case that b(v) must be nondecreasing in v.435

We now return to the case in which players make bids on a continuous scale.436
Although the previous results do not guarantee existence of a symmetric monotonic437
equilibrium when players may make bids along a continuous scale, we have shown that438
symmetric monotonic equilibria always exist in GSP auctions if players must make439
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bids in arbitrarily fine discrete increments. Furthermore, Gomes and Sweeney [2014] 440
have illustrated that for a wide variety of cases, there exists a symmetric pure-strategy 441
equilibrium in which bidders follow strictly monotonic bidding strategies even if the 442
players may submit bids along a continuous scale. We thus take symmetric monotonic 443
equilibria as a starting point and use this to address the question of whether targeting 444
is preferred to bundling for the seller. 445

In order to address this question, we must first derive expressions for the seller’s 446
revenue in the case in which the bidders are allowed to target. This is done in the 447
following lemma. 448

LEMMA 6.3. Suppose that Fi(v) = F(v) for all i and the bidders use a symmetric and 449
strictly monotonic bidding strategy b(v) in equilibrium. Then, expected revenue in GSP 450

auctions equals n
∫ v

r

∑s
k=1 ck

(n−1
k−1

)
(1 − F(v))k−1 F(v)n−k(v − 1−F(v)

f (v) ) f (v) dv. 451

This result illustrates that there is a natural correspondence between the seller’s 452
expected revenue in an auction for a single slot and the seller’s revenue in a GSP 453
auction. In a standard private-value auction, the seller’s expected revenue is just the 454

expectation of the highest virtual valuation v − 1−F(v)
f (v) . In a GSP auction, the only 455

difference is that the seller’s expected revenue is now the sum of the expectations of 456

the jth-highest virtual valuations v− 1−F(v)
f (v) weighted by the various click-through rates. 457

The seller’s revenue in GSP auctions also turns out to be exactly the same as the 458
seller’s revenue in position auctions using VCG pricing. Hummel [2016] has charac- 459
terized the seller’s revenue in a more general class of position auctions under VCG 460
pricing. In the special case of Hummel [2016], corresponding to the model considered 461
in this article, the seller’s revenue under VCG pricing is exactly the same as the seller’s 462
revenue in Lemma 6.3. 463

Now, we use this result to address the question of whether the seller prefers targeting 464
or bundling in position auctions. Our characterization of the circumstances under 465
which the seller prefers targeting to bundling illustrates that there are some natural 466
similarities between the situations in which the seller prefers targeting to bundling in 467
position auctions and single-object auctions. When there is a relatively small number 468
of players, the seller prefers bundling to targeting, and when there is a larger number 469
of players, the seller prefers targeting to bundling. For an intermediate numbers of 470
players, it is ambiguous as to whether the seller prefers targeting to bundling. This 471
result is formalized in the following theorem. 472

THEOREM 6.4. Suppose that Fi(v) = F(v) for all i, v − 1−F(v)
f (v) is increasing in v, the 473

bidders use a symmetric and strictly monotonic bidding strategy b(v) in equilibrium 474
under GSP pricing, and the reserve price is either zero or greater than or equal to 475
the optimal reserve (but less than the bids under bundling).8 Then, the following hold 476
regardless of whether the seller uses GSP or VCG pricing: 477

(1) There exists some n∗ ≥ 2 such that bundling is preferred to targeting for all values 478
of ck if and only if n ≤ n∗. 479

8Our proof of Theorem 6.4 makes use of the fact that E[v(k) − 1−F(v(k))
f (v(k))

|v(k) ≥ r]Pr(v(k) ≥ r) is decreasing

in k, where v(k) denotes the kth-highest value. This is immediate when either r = 0 (and Pr(v(k) ≥ r) = 1)
or when r is greater than or equal to the optimal reserve (and v − 1−F(v)

f (v) ≥ 0 for all v ≥ r). However, this
may not hold for other values of r because smaller values of k may mean that it is more likely that v(k) ≥ r

and v(k) − 1−F(v(k))
f (v(k))

< 0 will be satisfied. Thus, our proof breaks down without this assumption, though we
conjecture that it may be possible to generalize the results to other suboptimal reserves.
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(2) There exists some n∗∗ > n∗ such that targeting is preferred to bundling for all values480
of ck if and only if n ≥ n∗∗.481

(3) For values of n ∈ (n∗, n∗∗), there exists some positive integer k∗ < s such that targeting482
is preferred to bundling if and only if the values of ck for k ≤ k∗ are sufficiently large483
compared to the values of ck for k > k∗. Moreover, this k∗ is nondecreasing in n.484

In position auctions with symmetric bidders, the number of players never has any ef-485
fect on seller revenues under bundling because the players always bid their (identical)486
expected values under bundling. However, seller revenues are increasing in the number487
of bidders in position auctions because the expectations of the kth-highest virtual valu-488

ations v − 1−F(v)
f (v) are all increasing in the number of players. This explains the observed489

comparative statics results with respect to the number of players in Theorem 6.4.490
The comparative statics results in Part (3) of Theorem 6.4 follow from the difference491

between the seller’s expected revenue from each position in the position auction under492
targeting and bundling. Under targeting, the seller’s expected revenue per click from493
the top positions is greater than the seller’s expected revenue per click from the bottom494
positions, but the seller’s expected revenue per click is independent of position under495
bundling. Thus, situations in which the top positions contribute a disproportionate496
percentage of revenue compared to the bottom positions make targeting a better choice,497
whereas situations in which the bottom positions contribute a substantial percentage of498
revenue may make bundling a better choice. This gives the comparative statics results499
given in Part (3) of Theorem 6.4.500

Finally, we present an example to give a sense of the values n∗ and n∗∗ that arise in501
Theorem 6.4. When the players’ values are drawn from the uniform distribution and502
there is no reserve price, we obtain the following result.503

OBSERVATION 6.1. Suppose that the bidders’ values are independent draws from the504
uniform distribution on [0, 1] and there is no reserve price. Then, the appropriate values505
for n∗ and n∗∗ in Theorem 6.4 are n∗ = 3 and n∗∗ = 2s + 1.506

We close with one remark about the robustness of these results to modeling assump-507
tions. Throughout this section, we have assumed that bidders do not know each other’s508
values when they bid under targeting. However, the results of this section for the zero509
reserve price will hold even if bidders are able to learn the other bidders’ values before510
bidding. If bidders know each other’s values, then we know from Edelman et al. [2007]511
that, even under GSP, there exists an envy-free equilibrium in which the players’ pay-512
offs are the same as they would be in the dominant strategy equilibrium of the VCG513
mechanism. Under this equilibrium, the seller’s revenue would be the same as it is un-514
der VCG for any realization of the targeting data. Thus, the seller’s expected revenue515
unconditional on the realization of the targeting data is also the same as it would be516
under VCG. However, the expression we have given for the seller’s expected revenue517
under targeting in Lemma 6.3 is equal to the seller’s expected revenue under VCG.518
Thus, even if bidders learn each other’s values before bidding under targeting, the sub-519
stantive conclusions in Theorem 6.4 will hold if bidders follow the main equilibrium520
strategies considered in Edelman et al. [2007].521

7. WHAT IF NOT ALL BIDDERS CAN TARGET?522

So far in this article, we have compared scenarios in which all bidders can target with523
scenarios in which no bidders can target. While this an important baseline, there may524
also be settings in which targeting information would only help some bidders more525
accurately assess the values they have for a particular advertisement. Additionally, a526
seller may want to experiment with making targeting information available to certain527
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advertisers but not to others. This section explores the consequences of allowing only 528
certain bidders to target. 529

As before, we consider a model in which there are n bidders, and bidder i’s value, vi, is 530
an independent draw from the cumulative distribution function Fi with corresponding 531
density fi. If bidder i is able to target, i learns i’s value before placing a bid, but if 532
bidder i is not able to target, then the bidder simply knows that the bidder’s expected 533
value for a click equals

∫ ∞
0 v fi(v) dv = ∫ ∞

0 1 − Fi(v) dv. For notational convenience, we 534

assume throughout that
∫ ∞

0 1 − Fi(v) dv ≥ ∫ ∞
0 1 − Fi+1(v) dv for all i. We consider both 535

standard second-price auctions and generalized second-price auctions with no reserve 536
price. 537

First, we address whether the types of comparative statics results that we obtained 538
in the previous sections continue to hold when only some of the bidders can target. 539
Previously, we obtained results that suggested that targeting is more likely to be 540
preferred to bundling when there are more bidders who can target. While this will 541
continue to hold if at least two bidders cannot target, this will not hold in general, as 542
the following result illustrates. 543

THEOREM 7.1. If bidders’ values are drawn from the same distribution, a seller’s 544
expected revenue from targeting need not be monotonic in the number of bidders that 545
can target in an auction for a single object. However, a seller’s expected revenue from 546
targeting will be monotonic in the number of bidders that can target if at least two 547
bidders cannot target. 548

When at least two bidders cannot target, the second-highest bid will always be at 549
least as large as the expected value, but could be strictly larger if the second-highest 550
bid of the bidders that can target is greater than this expected value. This second- 551
highest bid of the bidders that can target will be larger, on average, when more bidders 552
can target. Thus, a seller’s expected revenue from targeting will be monotonic in the 553
number of bidders that can target if at least two bidders cannot target. 554

However, the seller’s revenue from targeting may be lower if only one bidder can 555
target than if two bidders can target. This is especially likely to arise if the bidders’ 556
values are drawn from distributions with fat tails. In this case, if there are four bidders 557
and only two bidders can target, the seller’s expected revenue under targeting is larger 558
than that of bundling. However, if three bidders can target, then it is very likely that 559
these bidders will all learn that they have a very small value, the seller’s revenue is 560
likely to be very small, and bundling will be preferred to targeting. 561

Now, we turn to the question of how allowing just one bidder to target would affect 562
seller revenues when the buyers’ values are drawn from different distributions. This 563
situation is important because some targeting information may affect only one bidder’s 564
estimate of the bidder’s value for advertising to a certain user. First, we consider 565
auctions for a single object. 566

THEOREM 7.2. Suppose that the bidders’ values are drawn from different distributions 567
and only one bidder will be able to make use of certain targeting information in an 568
auction for a single object. Then, the following results hold: 569

(1) The seller strictly prefers bundling to targeting if the bidder with the highest expected 570
value is the only bidder that can target. 571

(2) The seller strictly prefers targeting to bundling if a bidder with the kth-highest 572
expected value for some k ≥ 3 is the only bidder that can target. 573

(3) If a bidder with the second-highest expected value is the only bidder that can target, 574
then the seller prefers targeting to bundling if and only if the values of the highest 575
and third-highest expected bids are sufficiently high. 576
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Next, we address how allowing just one bidder to target would affect seller revenues577
in position auctions. In analyzing how this would affect seller revenues in position578
auctions, we make the assumption that the seller’s revenue is the same as it would be579
in the dominant-strategy equilibrium of the VCG mechanism. Edelman et al. [2007]580
have noted that, even in the GSP auction, there are settings in which there is always581
an envy-free equilibrium in which the players’ payoffs are the same as they would be582
in the dominant-strategy equilibrium of the VCG mechanism. Since this is a natural583
equilibrium to focus on, we consider how allowing only one bidder to target would affect584
the seller’s revenue in such an equilibrium.585

THEOREM 7.3. Suppose that only one bidder will be able to make use of certain targeting586
information. Then, if bidders follow an equilibrium of the position auction that results587
in the same revenue as the dominant-strategy equilibrium of the VCG mechanism, the588
following results hold:589

(1) The seller strictly prefers bundling to targeting if the bidder with the highest expected590
value is the only bidder that can target.591

(2) The seller strictly prefers targeting to bundling if a bidder with the kth-highest592
expected value for some k ≥ s + 2 is the only bidder that can target.593

(3) If a bidder with the kth-highest expected value for some k ∈ [2, s + 1] is the only594
bidder that can target, there is no general result as to whether the seller prefers595
targeting to bundling.596

Together with Theorem 7.2, Theorem 7.3 suggests that it is not in a seller’s inter-597
est to enable targeting if only the strongest bidder will be able to use the targeting598
information. It is in a seller’s interest to improve targeting if only the weakest bidders599
will be able to make use of the targeting information, and it may or may not be in600
a seller’s interest to improve targeting if only intermediate-strength bidders will be601
able to make use of the targeting. These results are somewhat related to the insights602
on optimal auctions by Myerson [1981]. Myerson [1981] finds that, when asymmetric603
bidders are competing in an auction, a seller can improve its revenue by giving an604
artificial bonus to the weaker bidders. In this setting, the seller can likewise improve605
revenue when the weaker bidders have the advantage of being able to target.606

8. EXPLORING ADS607

In this section, we explore a connection between the circumstances under which im-608
proved targeting increases revenue and the circumstances under which exploring ads609
with unknown click-through rates would increase revenue. Often in online advertising,610
ads are ranked on the basis of the product of the bid that an advertiser has placed per611
click as well as a predicted click-through rate, which we refer to as an expected cost-612
per-1000-impressions or eCPM bid. While the predicted click-through rates are likely613
to be quite accurate for ads for which there is a lot of evidence about the click-through614
rate of the ad because the ad has been shown a large number of times, they may be less615
accurate for ads for which there is little that is known about the click-through rate of616
the ad because the ad has hardly been shown at all.617

In this case, if the system always ranks the ads on the basis of their eCPM bids,618
then ads ranked below the top ad will never be shown and we will never learn the619
click-through rates of these ads. On the other hand, the system could try to explore ads620
for which the click-through rates of the ads are not known by sometimes showing these621
ads to learn more about their click-through rates. If one does enough exploration, then622
over the course of many auctions, one will eventually learn the click-through rates of623
all the ads with arbitrary precision.624
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There is a connection between the circumstances under which exploring the click- 625
through rates of ads will increase long-run revenue relative to not doing any exploration 626
in a Bayesian model for uncertain eCPMs and when improved targeting increases 627
revenue. If one does not explore the click-through rates of the ads, then one will simply 628
always show the ad that one expects to be best, and this advertiser will pay an average 629
price equal to the expected second-highest eCPM bid. If one systematically explores the 630
click-through rates of the ads, then one eventually learns that the true eCPMs of all 631
the ads and revenue will ultimately equal the actual second-highest eCPM bid. From 632
this, we have the following result. 633

Remark 8.1. The circumstances under which exploring ads increases revenue in 634
the long run are isomorphic to the circumstances under which improved targeting 635
increases revenue. 636

An implication of this result is that if it is beneficial to improve one’s estimates of the 637
predicted click-through rates of the ads, then it is also beneficial to improve targeting. 638
Similarly, improving targeting is beneficial if it is beneficial to improve one’s estimates 639
of the predicted click-through rates of the ads. 640

9. CONCLUSION 641

This article has analyzed when improved targeting increases revenue. We have gen- 642
erally found that improved targeting increases revenue when there are a sufficiently 643
large number of serious bidders, but targeting can hurt revenue when there are just a 644
few dominant bidders. These types of results tend to hold regardless of whether we are 645
in a standard second-price auction or a position auction, and regardless of whether the 646
seller uses reserve prices. 647

We close by discussing the robustness of our results to one possible modeling as- 648
sumption. Throughout this article, we have assumed that the number of bidders in 649
the auction is the same regardless of whether the seller uses bundling or targeting, 650
but one might imagine that the number of bidders in the auction could change as a 651
result of improved targeting. However, this possibility would have no effect on most of 652
the results in this article. When bidders’ values are all drawn from the same distri- 653
bution, the seller’s revenue under bundling is independent of the number of bidders 654
in the auction, assuming that at least two bidders bid in the auction or there is a 655
reserve price. Thus, if we interpret n to be the number of bidders in the auction under 656
targeting, whether targeting is preferred to bundling is independent of the number of 657
bidders under bundling. We therefore can immediately extend all of our results for the 658
symmetric setting to a model in which the number of bidders may change as a result 659
of improved targeting. 660

661

APPENDIX 662

PROOF OF THEOREM 3.1. The difference between the seller’s expected revenue under 663
targeting and bundling when there are n = 2 bidders is 664

�2 =
∫ ∞

0
F2(v) −

2∑
j=1

∏
i �= j

Fi(v) + (2 − 1)
2∏

j=1

Fj(v) dv

=
∫ ∞

0
−F1(v) + F2(v)F1(v) dv =

∫ ∞

0
(F2(v) − 1)F1(v) dv < 0.

Thus, the seller prefers bundling to targeting when there are n = 2 bidders. 665
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Throughout the proofs of Theorems 3.2 and 3.3, we let v denote the upper bound of666
the support of F(·).667

PROOF OF THEOREM 3.2. First, note that if n ≥ 4, then φ(y) ≡ y2

2 + y3

3 +· · ·+ yn−1

n−1 −n−1
n yn ≥ 0668

for all y ∈ [0, 1]. φ(y) = yn( y2−n

2 +· · ·+ yn−n

n −1); thus, φ ≥ 0 if and only if y2−n

2 +· · ·+ yn−n

n −1 ≥669

0. Since y2−n

2 + · · · + yn−n

n − 1 is decreasing in y, φ ≥ 0 for all y ∈ [0, 1] if and only if670
1
2 + · · · + 1

n − 1 ≥ 0, which holds for all n ≥ 4. Thus, φ(y) ≥ 0 for all y ∈ [0, 1] if n ≥ 4.671
Now, the difference between the seller’s expected revenue under targeting and672

bundling when there are n bidders and Fi(v) = F(v) for all i is673

�n =
∫ v

0
F(v) − nFn−1(v) + (n − 1)Fn(v) dv

=
∫ v

0

(
1 − F(v)

f (v)

)
(F(v) + F2(v) + · · · + Fn−2(v) − (n − 1)Fn−1(v)) f (v) dv

=
(

1 − F(v)
f (v)

) (
F2(v)

2
+ F3(v)

3
+ · · · + Fn−1(v)

n − 1
− n − 1

n
Fn(v)

) ∣∣∣∣
v

0

−
∫ v

0

(
1 − F(v)

f (v)

)′ ( F2(v)
2

+ F3(v)
3

+ · · · + Fn−1(v)
n − 1

− n − 1
n

Fn(v)
)

dv

=
(

lim
v→v

1 − F(v)
f (v)

) [
1
2

+ 1
3

+ · · · + 1
n − 1

− n − 1
n

]

−
∫ v

0

(
1 − F(v)

f (v)

)′ [ F2(v)
2

+ F3(v)
3

+ · · · + Fn−1(v)
n − 1

− n − 1
n

Fn(v)
]

dv.

By the result in the first paragraph of this proof, both terms in square brackets674

are positive for all v > 0. Also, the term limv→v
1−F(v)

f (v) is nonnegative since 1−F(v)
f (v) is675

nonnegative for all v, and the term ( 1−F(v)
f (v) )′ is nonpositive by assumption. Thus, �n ≥ 0676

and the seller prefers targeting to bundling.677

PROOF OF THEOREM 3.3. The difference between the seller’s expected revenue under678
targeting and bundling when there are n = 3 bidders is679

�3 =
∫ v

0
F(v) − 3F2(v) + 2F3(v) dv =

∫ v

0

1
f (v)

(F(v) − 3F2(v) + 2F3(v)) f (v) dv

= 1
f (v)

(
F2(v)

2
− F3(v) + F4(v)

2

) ∣∣∣∣
v

0
−

∫ v

0

(
1

f (v)

)′ ( F2(v)
2

− F3(v) + F4(v)
2

)
dv

= F2(v)
2 f (v)

(
1 − F(v)

)2
∣∣∣∣
v

0
−

∫ v

0

(
1

f (v)

)′ F2(v)
2

(
1 − F(v)

)2 dv.

Now, if f (v) is nondecreasing in v on its support, then F2(v)
2 f (v) (1 − F(v))2|v0 = 0 and680

�3 = − ∫ v

0 ( 1
f (v) )

′ F2(v)
2 (1− F(v))2 dv. Thus, if f (v) is nondecreasing in v (but not constant)681

on its support, then �3 > 0, and if f (v) is constant on its support, then �3 = 0. Similarly,682

if f (v) is nonincreasing in v (but not constant) on its support and F2(v)
2 f (v) (1 − F(v))2|v0 = 0,683

then �3 = − ∫ v

0 ( 1
f (v) )

′ F2(v)
2 (1 − F(v))2 dv < 0.684

If f (v) is nonincreasing in v and F2(v)
2 f (v) (1 − F(v))2|v0 �= 0 (which implies that v = ∞),685

then consider what �3 would equal if the players’ values were instead random draws686
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from the distribution F(v|θ ) satisfying F(v|θ ) = F(v)
F(θ) for v ≤ θ and F(v) = 1 for v > θ . 687

For any finite θ > 0 such that f (v) is not constant for all v ≤ θ , it is necessarily the 688

case that F2(v|θ)
2 f (v|θ) (1 − F(v|θ ))2|v|θ

0 = 0, where f (v|θ ) denotes the density corresponding to 689

F(v|θ ) and v|θ denotes the upper bound on the support of F(v|θ ). Moreover, f (v|θ ) is 690
nonincreasing in v (but not constant) on its support; thus, �3 < 0 when the players’ 691
values are random draws from F(v|θ ). Furthermore, �3 must be bounded away from 0 692
for all θ ≥ θ∗, where θ∗ is some constant in the interior of the support of F(·). 693

However, in the limit as θ becomes arbitrarily large, the value of �3 when the values 694
of the players are random draws from the distribution F(v|θ ) becomes arbitrarily close 695
to the value of �3 when the values of the players are random draws from the distribution 696
F(v). From this, it follows that if f (v) is nonincreasing in v (but not constant) on its 697

support, then �3 < 0 even if F2(v)
2 f (v) (1 − F(v))2|v0 �= 0. The result follows. 698

PROOF OF THEOREM 3.4. Under bundling, all bidders have an expected value of p; thus, 699
all bidders bid p and the seller obtains a revenue of p. Under targeting, if at least two 700
bidders learn that they have a value of 1, these bidders will all bid 1, and the seller’s 701
revenue will be 1. However, if no more than one bidder learns that it has a value of 702
1, then all other bidders make a bid of 0, the second-highest bid will be 0, and the 703
seller’s revenue will be 0. Thus, under targeting, a seller’s expected revenue is just the 704
probability there will be at least two bidders who learn that they have a value of 1, or 705
1 − (1 − p)n − np(1 − p)n−1. 706

From this, it follows that the seller prefers targeting to bundling if and only if 1−(1− 707
p)n−np(1−p)n−1 ≥ p ⇔ 1−p ≥ (1−p)n+np(1−p)n−1 ⇔ 1 ≥ (1−p)n−1+np(1−p)n−2. Now, 708
g(p) ≡ (1−p)n−1+np(1−p)n−2 = (1+(n−1)p)(1−p)n−2 satisfies g(0) = 1 and g(1) = 0 and 709
dg
dp = (n−1)(1−p)n−2−(n−2)(1+(n−1)p)(1−p)n−3 = (n−1)(1−p)(1−p)n−3−(n−2)(1+(n− 710

1)p)(1−p)n−3 = [(n−1)−(n−1)p−(n−2)−(n−2)(n−1)p](1−p)n−3 = [1−(n−1)2 p](1−p)n−3. 711

However, the fact that dg
dp = [1 − (n− 1)2 p](1 − p)n−3 means that dg

dp > 0 if p < 1
(n−1)2 and 712

dg
dp < 0 if p > 1

(n−1)2 , meaning that g(p) is initially increasing in p and then decreasing 713
in p. 714

Combining this with the fact that g(0) = 1 and g(1) = 0 means that there is some 715
p∗ ∈ (0, 1) for which g(p∗) = 1, and at this p∗, it must be the case that g′(p∗) < 0, 716
g(p) ≥ 1 for p ≤ p∗, and g(p) < 1 for p > p∗. Thus, there is some p∗(n) ∈ (0, 1) such that 717
the seller prefers targeting to bundling if and only if p > p∗(n). 718

Furthermore, since this p∗(n) must satisfy g(p∗(n)) = 1, we must have that (1 − 719
p∗(n))n−1+np∗(n)(1− p∗(n))n−2 = 1. This, in turn, implies that limn→∞ p∗(n) = 0 because, 720
for any fixed p∗ ∈ (0, 1), limn→∞(1 − p∗)n−1 + np∗(1 − p∗)n−2 = 0. Thus, it must be that 721
limn→∞ p∗(n) = 0 in order for (1 − p∗(n))n−1 + np∗(n)(1 − p∗(n))n−2 = 1 to hold for all n. 722

It also must be the case that limn→∞ np∗(n) = 0. To see this, note that if there is some 723
subsequence of {n}∞n=3 for which limn→∞ np∗(n) = α > 0 along this subsequence, then 724

limn→∞(1−p∗(n))n−1+np∗(n)(1−p∗(n))n−2 = limn→∞(1− α
n)n−1+α(1− α

n)n−2 = e−α+αe−α = 725

(1 + α)e−α �= 1 for α �= 0. Thus, in order for (1 − p∗(n))n−1 + np∗(n)(1 − p∗(n))n−2 = 1 to 726
hold for all n, it must be the case that limn→∞ np∗(n) = 0. 727

Finally, it must be the case that limn→∞ n2 p∗(n) = 2. To see this, note that 728

(1 − p∗(n))n−1 + np∗(n)(1 − p∗(n))n−2

= 1 − (n − 1)p∗(n) + (n − 1)(n − 2)
2

p∗(n)2 + O(n3 p∗(n)3)

+ np∗(n)(1 − (n − 2)p∗(n) + O(n2 p∗(n)2))

= 1 + p∗(n) − (n + 1)(n − 2)
2

p∗(n)2 + O(n3 p∗(n)3).
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Thus, in order for (1 − p∗(n))n−1 + np∗(n)(1 − p∗(n))n−2 = 1 to hold, it must be the729

case that 1 + p∗(n) − (n+1)(n−2)
2 p∗(n)2 + O(n3 p∗(n)3) = 1 for large n. However, a necessary730

condition for this to hold is that limn→∞ p∗(n)
(n+1)(n−2)

2 p∗(n)2 = 1 or limn→∞ 2
n2 p∗(n) = 1. Since this731

can only hold if limn→∞ n2 p∗(n) = 2, we know that limn→∞ n2 p∗(n) = 2.732

PROOF OF THEOREM 4.1. We know from Bulow and Klemperer [1996] that when f (v)733
is nonincreasing in v, the seller’s expected revenue in an auction with two bidders and734
the optimal reserve price is lower than the seller’s expected revenue in an auction with735
three bidders and no reserve price. However, we know from Theorem 3.3 that when736
Fi(v) = F(v) for all i, and the density f (v) is nonincreasing in v, then the seller prefers737
bundling to targeting when there are n = 3 bidders and no reserve price. Since the738
seller’s expected revenue under targeting when there are two bidders with the optimal739
reserve price is even lower than the seller’s expected revenue under targeting when740
there are three bidders and no reserve price, it follows that the seller prefers bundling741
to targeting when there are n = 2 bidders, even if the seller uses the optimal reserve742
price.743

PROOF OF OBSERVATION 4.1. When there are n = 3 bidders and each bidder’s value is an744
independent and identically distributed draw from the uniform distribution, we know745
from Theorem 3.3 that the seller is indifferent between bundling and targeting when746
there is no reserve price. Since setting the optimal reserve price increases the seller’s747
revenue under targeting but not under bundling, it then follows that, when there are748
n = 3 bidders and the seller sets the optimal reserve price, the seller obtains greater749
revenue under targeting than under bundling when the bidders’ values are drawn from750
the uniform distribution.751

Now, suppose that there are n = 3 bidders and the bidders’ values are independent752
and identically distributed draws from the exponential distribution with cumulative753
distribution function F(v) = 1−e−v. If there is no targeting, then all bidders bid their ex-754
pected value of 1, and the seller’s revenue will be 1. If there is targeting, then the seller’s755

optimal reserve price r satisfies r = 1−F(r)
f (r) = 1, and the seller’s expected revenue is756 ∫ ∞

r

(
v − 1 − F(v)

f (v)

)
nF(v)n−1 f (v) dx =

∫ ∞

1
(v − 1)nF(v)n−1 f (v) dv

= −(v − 1)(1 − F(v)n)
∣∣∣∣
∞

1
+

∫ ∞

1
1 − F(v)n dv

=
∫ ∞

1
1 − (1 − e−v)3 dv = 2 − 9e + 18e2

6e3 < 1.

Thus, the seller prefers bundling to targeting when the bidders’ values are drawn757
from the exponential distribution.758

PROOF OF LEMMA 5.1. The revenue gain from targeting is759

�n =
∫ ∞

0
F2(v) −

n∑
j=1

∏
i �= j

Fi(v) + (n − 1)
n∏

j=1

Fj(v) dv

=
∫ ∞

0
Fα2 (v) −

n∑
j=1

∏
i �= j

Fαi (v) + (n − 1)
n∏

j=1

Fα j (v) dv

=
∫ ∞

0
Fα2 (v) −

n∑
j=1

F A−α j (v) + (n − 1)F A(v) dv.
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Now, define h(z) to be h(z) ≡ zα2 − ∑n
j=1 zA−α j + (n − 1)zA. Note that h(0) = h(1) = 0. 760

Also, since n ≥ 3, we have α2 < A− α j for all j; thus, for very small values of z > 0, we 761
have that h(z) > 0. Furthermore, h′(1) = α2 −∑n

j=1(A−α j)+ (n−1)A = α2 > 0; thus, for 762

values of z near 1, h(z) < 0. Combining these facts shows that there must be at least 763
one value of z ∈ (0, 1) for which h(z) = 0. 764

We now show that there is, in fact, only one value of z ∈ (0, 1) for which h(z) = 0. To 765
see this, note that, if h(z) = 0,

∑n
j=1 zA−α j = zα2 + (n − 1)zA. Thus, for any such z, we 766

have that 767

zh′(z) = α2zα2 −
n∑

j=1

(A− α j)zA−α j + (n − 1)AzA

= α2zα2 − n
n∑

j=1

1
n

(A− α j)zA−α j + (n − 1)AzA

≥ α2zα2 − n
n∑

j=1

1
n

(A− α j)
n∑

j=1

1
n

zA−α j + (n − 1)AzA

= α2zα2 −
n∑

j=1

1
n

(A− α j)
n∑

j=1

zA−α j + (n − 1)AzA

= α2zα2 − n − 1
n

A(zα2 + (n − 1)zA) + (n − 1)AzA

=
(

α2 − n − 1
n

A
)

zα2 + (n − 1)
(

1 − n − 1
n

)
AzA

=
(

α2 − n − 1
n

A
)

zα2 + n − 1
n

AzA = zα2

[(
α2 − n − 1

n
A
)

+ n − 1
n

AzA−α2

]
,

where the inequality follows from the fact that A − α j is increasing in j and zA−α j 768

is decreasing in j. Therefore, the covariance between these terms, Cov(A− α j, zA−α j ), 769

is nonpositive. Thus, E[(A − α j)(zA−α j )] = E[A − α j]E[zA−α j ] + Cov(A − α j, zA−α j ) ≤ 770

E[A−α j]E[zA−α j ], meaning that
∑n

j=1
1
n(A−α j)zA−α j ≤ ∑n

j=1
1
n(A−α j)

∑n
j=1

1
nzA−α j . The 771

fourth line in these equations invokes the fact that
∑n

j=1 zA−α j = zα2 + (n − 1)zA when 772

h(z) = 0. 773
Now, the sign of the final expression in this inequality for zh′(z) is nondecreasing in 774

z for z > 0. From this, it follows that if there is some ẑ ∈ (0, 1) for which h(ẑ) = 0 and 775
h′(ẑ) > 0 (thus, h(z) > 0 for values of z slightly greater than ẑ), then it is necessarily the 776
case that, for any other values of z > ẑ for which h(z) = 0, we must have that h′(z) > 0 777
as well. However, if h(z) > 0 for values of z slightly greater than ẑ, it is necessarily the 778
case that the next smallest value of z > ẑ satisfying h(z) = 0 also satisfies h′(z) < 0. 779
Since there is at least one other value of z > ẑ satisfying h(z) = 0 (when z = 1), this 780
contradicts the fact that h′(z) > 0 for any values of z > ẑ for which h(z) = 0. Thus, if 781
there is some ẑ ∈ (0, 1) for which h(ẑ) = 0, it must be the case that h′(ẑ) < 0. 782

However, if h′(ẑ) < 0 for any ẑ ∈ (0, 1) satisfying h(ẑ) = 0, then it must be the case 783
that h(z) < 0 for values of z slightly greater than ẑ, and the next smallest value of 784
z > ẑ satisfying h(z) = 0 also satisfies h′(z) > 0. Combining this with the results in the 785
previous paragraph shows that if h′(ẑ) < 0 for any ẑ ∈ (0, 1) satisfying h(ẑ) = 0, then 786
z = 1 must be the next smallest value of z > ẑ satisfying h(z) = 0. From this, it follows 787
that that there is exactly one value of z ∈ (0, 1) for which h(z) = 0. Furthermore, if ẑ 788
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denotes the unique z ∈ (0, 1) for which h(z) = 0, then h(z) > 0 for values of z ∈ (0, ẑ) and789
h(z) < 0 for values of z ∈ (ẑ, 1).790

Now, by construction,791

�n =
∫ ∞

0
Fα2 (v) −

n∑
j=1

F A−α j (v) + (n − 1)F A(v) dv =
∫ ∞

0
h(F(v)) dv

=
∫ ∞

0

1 − F(v)
f (v)

h(F(v))
1 − F(v)

f (v) dv

= 1 − F(v)
f (v)

∫ v

0

h(F(y))
1 − F(y)

f (y) dy
∣∣∣∣
∞

0
−

∫ ∞

0

(
1 − F(v)

f (v)

)′ ∫ v

0

h(F(y))
1 − F(y)

f (y) dy dv.

Since there is some ẑ ∈ (0, 1) for which h(z) > 0 for values of z ∈ (0, ẑ) and h(z) < 0792

for values of z ∈ (ẑ, 1), it follows that if
∫ v

0
h(F(y))
1−F(y) f (y) dy > 0 when v = ∞, then793 ∫ v

0
h(F(y))
1−F(y) f (y) dy > 0 also holds for all v < ∞. Combining this with the fact that 1−F(v)

f (v) is794

nonincreasing in v shows that if
∫ ∞

0
h(F(y))
1−F(y) f (y) dy = ∫ 1

0
h(v)
1−v

dv > 0, we have that �n > 0.795

Now,796

φ =
∫ 1

0

h(v)
1 − v

dv =
∫ 1

0

vα2 − ∑n
j=1 vA−α j + (n − 1)vA

1 − v
dv

=
∫ 1

0

vα2 − vA − ∑n
j=1(vA−α j − vA)

1 − v
dv =

∫ 1

0

A−1∑
i=α2

vi −
n∑

j=1

A−1∑
i=A−α j

vi dv

=
A−1∑
i=α2

1
i + 1

−
n∑

j=1

A−1∑
i=A−α j

1
i + 1

=
A∑

i=α2+1

1
i

−
n∑

j=1

A∑
i=A−α j+1

1
i
.

Note that log(m+1
k ) <

∑m
i=k

1
i < log( m

k−1 ). Thus, φ = ∑A
i=α2+1

1
i − ∑n

j=1
∑A

i=A−α j+1
1
i >797

log( A+1
α2+1 ) − ∑n

j=1 log( A
A−α j

); therefore, if log( A+1
α2+1 ) − ∑n

j=1 log( A
A−α j

) > 0, then φ > 0 holds798

as well, and log( A+1
α2+1 ) − ∑n

j=1 log( A
A−α j

) > 0 ⇔ A+1
α2+1 >

∏n
j=1

A
A−α j

⇔ α2+1
A+1 <

∏n
j=1(1 − α j

A ).799

However, in the limit as α2 (and A) become large, the difference between α2
A and α2+1

A+1800

becomes vanishingly small. Thus, if α2 is sufficiently large and α2
A <

∏n
j=1(1 − α j

A ), it801

follows that �n > 0, and the seller prefers targeting to bundling.802
Now, the minimizer of the function

∏n
j=2(1 − α j

A ) subject to the constraints that803 ∑n
j=2 α j = A− α1 and α j ≤ α2 for all j ≤ 2 is the same as the minimizer of the function804

log
∏n

j=2(1 − α j

A ) = ∑n
j=2 log(1 − α j

A ), which is minimized when α2 = α3 = · · · = αm for805

the largest value of m satisfying
∑m

j=2 α j ≤ A − α1, αm+1 = A − α1 − (m − 1)α2, and806

α j = 0 for all j > m+ 1. Thus, the minimum possible value of
∏n

j=2(1 − α j

A ) subject to807

the constraints that
∑n

j=2 α j = A− α1 and α j ≤ α2 for all j ≤ 2 is greater than or equal808

to (1− α2
A )

A−α1
α2 . From this, it follows that if α2

A ≤ (1− α1
A )(1− α2

A )
A−α1
α2 = (1− α1

A )(1− α2
A )

1−α1/A
α2/A ,809

then the seller prefers targeting to bundling.810

PROOF OF THEOREM 5.2. First, we show that there is some y∗ ∈ (0, 1 − α1
A ) such that the811

inequality in Lemma 5.1 is satisfied if and only if α2
A ≤ y∗. Note that α2

A ≤ (1 − α1
A )(1 −812

α2
A )

1−α1/A
α2/A holds if and only if α2/A

1−α1/A ≤ (1 − α2
A )

1−α1/A
α2/A . Now, let β ≡ α2

A and let γ ≡ 1 − α1
A . We813

can rewrite this inequality in terms of β and γ as β

γ
≤ (1 − β)γ /β or (β/γ )(β/γ ) ≤ 1 − β. If814
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x ≡ β

γ
, then we can further rewrite this inequality as xx ≤ 1 − γ x or xx + γ x ≤ 1. Now, 815

g(x; γ ) ≡ xx + γ x is a convex function of x that satisfies g(0; γ ) = 1, g(1; γ ) = 1 + γ , and 816
g′(0) = −∞. Thus, g(x; γ ) ≤ 1 if x is sufficiently close to 0, g(x; γ ) > 1 if x is sufficiently 817
close to 1, and there is some x∗(γ ) ∈ (0, 1) such that g(x; γ ) ≤ 1 if and only if x ≤ x∗(γ ). 818
From this, it follows that this inequality is satisfied if and only if α2

A ≤ y∗ for some 819

y∗ ∈ (0, 1 − α1
A ). 820

The result in the previous paragraph implies that if the inequality in Lemma 5.1 is 821
satisfied when α2

A = α1
A , then this inequality is also satisfied for any values of α2

A ≤ α1
A . 822

Now, the inequality in Lemma 5.1 is satisfied when α2
A = α1

A if and only if α1
A ≤ (1 − 823

α1
A )(1 − α1

A )
1−α1/A

α1/A , which holds if and only if α1/A
1−α1/A ≤ (1 − α1

A )
1−α1/A

α1/A . Thus, if δ ≡ α1
A , then 824

this holds if and only if δ
1−δ

≤ (1 − δ)
1−δ

δ or ( δ
1−δ

)δ/(1−δ) + δ ≤ 1. Now, h(δ) ≡ ( δ
1−δ

)δ/(1−δ) + δ 825

satisfies h(0) = 1, h(1) = ∞, and h′(0) = −∞. Thus, h(δ) ≤ 1 for δ sufficiently close to 0, 826
h(δ) > 1 if δ is sufficiently close to 1, and there is some δ∗ ∈ (0, 1) such that h(δ∗) ≤ 1 if 827
and only if δ ≤ δ∗. Thus, the inequality in Lemma 5.1 is satisfied for all α2

A ≤ α1
A if and 828

only if α1
A ≤ δ∗, where δ∗ is the unique δ ∈ (0, 1) satisfying h(δ) = 1. Computationally, it 829

follows that δ∗ = 0.30366; thus, the inequality in Lemma 5.1 is satisfied if α1
A ≤ 0.30366, 830

and if α1
A > 0.30366, then there is some y∗ ∈ (0, min{ α1

A , 1− α1
A }) such that this inequality 831

is satisfied if and only if α2
A ≤ y∗. 832

Furthermore, since g(x; γ ) is increasing in γ , the critical value of x∗(γ ) given in 833
the first paragraph of this proof is decreasing in γ , meaning that x∗ is increasing 834
in α1

A . Thus, for the key value of y∗ earlier, it must be the case that y∗( α1
A )/(1 − α1

A ) is 835

increasing in α1
A . Furthermore, when γ = 0, x∗(γ ) = 1 since g(1; 0) = 1. Thus, as α1

A → 1, 836

y∗( α1
A )/(1 − α1

A ) → 1 as well. 837

PROOF OF LEMMA 6.1. Note that an equilibrium to the related game in which each 838
bidder i with value vi ≥ r is restricted to making bids in the interval [r, vi] is also an 839
equilibrium of the original game. This is because of the fact that any strategy that 840
ever involves making bids b > vi is weakly dominated by a strategy that replaces all 841
of these bids with a bid equal to vi. Thus, it suffices to demonstrate that there exists a 842
symmetric equilibrium in the related game in which bidders are restricted to making 843
bids in the interval [r, vi]. 844

Now, consider another game that differs from the just-mentioned game only in that 845
players may now use distributional strategies, as defined in Milgrom and Weber [1985]. 846
In this context, a distributional strategy for bidder i is a joint distribution over values 847
and bids with the property that the marginal density over his values is fi. Note that the 848
set of distributional strategies for each bidder is a convex and compact metric space. 849
Furthermore, for any given distributional strategies of the players, x and y, a player’s 850
payoff when the players use the distributional strategy αx + (1 − α)y is linear in α for 851
all α ∈ [0, 1]. Thus each bidder’s payoff function is quasiconcave in one’s distributional 852
strategy. 853

Further note that this game is also better-reply secure in the sense defined in Reny 854
[1999] and Reny [2008]. The condition of better-reply security is trivially satisfied when 855
bidders are restricted to making bids in discrete increments since a player’s payoff is 856
never discontinuous in the strategy choices of the players in the game in this case. 857
Thus, this game is better-reply secure. 858

We know from Theorem 3.1 of Reny [1999], however, that for any game in which 859
the players’ strategy spaces are convex and compact metric spaces, the player’s payoff 860
function is quasiconcave, and the game is better-reply secure, there must exist a pure- 861
strategy equilibrium. From this, it follows that there exists a pure-strategy equilibrium 862
in the game in which players use distributional strategies. 863
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To prove the result, it thus suffices to show that any equilibrium in distributional864
strategies must be equivalent to a pure-strategy equilibrium in which each bidder i fol-865
lows a strategy of making some bid bi(v) ∈ [r, vi] that depends only on the bidder’s value866
v. To see this, suppose by means of contradiction that there were a positive measure of867
values of v for which a bidder i randomized among bid choices when the bidder had a868
value of v. Let Gi(b) denote the cumulative distribution function corresponding to the869
distribution of bids that i uses (unconditional on the realization of i’s value). Consider870
an alternative bidding strategy in which the distribution of bids that i uses (uncondi-871
tional on the realization of i’s value) is still Gi(b), but i instead uses a pure-strategy872
bidding function bi(v) that is nondecreasing in v. If bidder i uses this alternative strat-873
egy, then the probability bidder i finishes in the kth position is the same as before for874
any k, but the average value per click that the bidder obtains in the circumstances875
under which the bidder obtains a click is greater than before since the bidder is now876
making higher bids when the bidder has a higher value. Since this would be a profitable877
deviation for bidder i, it follows that any equilibrium in distributional strategies must878
be equivalent to a pure-strategy equilibrium in which each bidder i follows a strategy879
of making some bid bi(v) ∈ [r, vi] that depends only on the bidder’s value v.880

Identical reasoning to that just given shows that any pure-strategy equilibrium in881
which each bidder i follows a strategy of making some bid bi(v) ∈ [r, vi] that depends882
only on the bidder’s value v must be monotonic in the sense that bi(v) must be non-883
decreasing in v. If Gi(b) denotes the cumulative distribution function corresponding to884
the distribution of bids that i uses (unconditional on the realization of i’s value), and885
the bidder employs an alternative bidding strategy in which the distribution of bids886
that i uses (unconditional on the realization of i’s value) is still Gi(b) but i instead uses887
a pure-strategy bidding function bi(v) that is nondecreasing in v, then this would be a888
profitable deviation for bidder i by the same reasoning in the previous paragraph. From889
this, it follows that bidders must use monotonic bidding strategies in any pure-strategy890
equilibrium.891

PROOF OF LEMMA 6.2. Consider the same related game described in the proof of892
Lemma 6.1 in which bidders are restricted to making bids in the interval [r, v] and893
players use distributional strategies, in which a distributional strategy for bidder i is894
a joint distribution over values and bids with the property that the marginal density895
over the bidder’s values is f . We know from the proof of Lemma 6.1 that this is a896
game in which the players’ strategy spaces are convex and compact metric spaces, the897
player’s payoff function is quasiconcave, and the game is better-reply secure. From898
this, it follows that the game also satisfies the weaker conditions of being diagonally899
quasiconcave and diagonally better-reply secure that are defined in Reny [1999]. Thus,900
we know from Theorem 4.1 of Reny [1999] that this game possesses a symmetric pure-901
strategy equilibrium in which players use distributional strategies.902

The same argument used in the proof of Lemma 6.1 to show that any equilibrium903
in distributional strategies must be a pure-strategy equilibrium in which each bidder904
follows a monotonic bidding strategy also applies in this less general setting. From this,905
it follows that there exists a symmetric pure-strategy equilibrium in which each bidder906
i follows the same bidding strategy b(v) ∈ [r, v] that depends only on the bidder’s value907
v and that bidders necessarily use monotonic bidding strategies in this equilibrium.908

PROOF OF LEMMA 6.3. If bidders are following a symmetric and strictly monotonic909
bidding strategy b(v) in equilibrium, then a bidder with value v ≥ r wins the kth position910
if and only if the bidder has the kth-highest value, which happens with probability911 (n−1

k−1

)
(1 − F(v))k−1 F(v)n−k. Now, we know from the Integral Form Envelope Theorem in912

Milgrom [2004] that if u(b, v) denotes the expected utility that a bidder with value v ≥ r913
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obtains from making a bid of b and U (v) ≡ supb∈[r,v] u(b, v), then U (v) = u(b(v), v) = 914

u(b(r), r) + ∫ v

r u2(b(x), x) dx, where u2(b, x) denotes the derivative of u(b, v) with respect 915
to v evaluated at v = x. 916

Now, if p(v) denotes the expected payment that a bidder with value v makes in equi- 917

librium, then we know that u(b(v), v) = ∑s
k=1 ck

(n−1
k−1

)
(1− F(v))k−1 F(v)n−kv− p(v). We also 918

know that u(b(r), r) = 0. Since u2(b(x), x) = d
dv

∑s
k=1 ck

(n−1
k−1

)
(1 − F(x))k−1 F(x)n−kv − p(x) 919

evaluated at v = x or
∑s

k=1 ck
(n−1

k−1

)
(1 − F(x))k−1 F(x)n−k, we have that

∫ v

r u2(b(x), x) dx = 920∫ v

r

∑s
k=1 ck

(n−1
k−1

)
(1 − F(x))k−1 F(x)n−k dx. Combining these facts with the result in 921

the previous paragraph shows that
∑s

k=1 ck
(n−1

k−1

)
(1 − F(v))k−1 F(v)n−kv − p(v) = 922∫ v

r

∑s
k=1 ck

(n−1
k−1

)
(1 − F(x))k−1 F(x)n−k dx. 923

From this, it follows that a bidder’s expected payment if the bidder has 924

a value of v is equal to
∑s

k=1 ck
(n−1

k−1

)
(1 − F(v))k−1 F(v)n−kv − ∫ v

r

∑s
k=1 ck

(n−1
k−1

)
(1 − 925

F(x))k−1 F(x)n−k dx, and a bidder’s expected payment unconditional on the precise real- 926

ization of the bidder’s value is
∑s

k=1 ck
(n−1

k−1

)
[
∫ v

r (1 − F(v))k−1 F(v)n−kv f (v) dv − ∫ v

r

∫ v

r (1 − 927

F(x))k−1 F(x)n−k f (v) dx dv] = ∑s
k=1 ck

(n−1
k−1

)
[
∫ v

r (1 − F(v))k−1 F(v)n−kv f (v) dv − ∫ v

r

∫ v

x (1 − 928

F(x))k−1 F(x)n−k f (v) dv dx] = ∑s
k=1 ck

(n−1
k−1

)
[
∫ v

r (1 − F(v))k−1 F(v)n−kv f (v) dv − ∫ v

r (1 − 929

F(x))kF(x)n−k dx] = ∫ v

r

∑s
k=1 ck

(n−1
k−1

)
(1 − F(v))k−1 F(v)n−k(v − 1−F(v)

f (v) ) f (v) dv. Since the 930

n bidders all make the same expected payments unconditional on the precise realiza- 931
tions of their values, it then follows that the seller’s expected revenue in the generalized 932

second-price auction equals n
∫ v

r

∑s
k=1 ck

(n−1
k−1

)
(1 − F(v))k−1 F(v)n−k(v − 1−F(v)

f (v) ) f (v) dv. 933

PROOF OF THEOREM 6.4. The seller’s expected revenue from targeting under the con- 934

ditions of the theorem can be rewritten as
∑s

k=1 ckE[v(k) − 1−F(v(k))
f (v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r), 935

where v(k) denotes the kth-highest value of n draws from the distribution F. We use this 936
to prove each of the three results. 937

First, note that in the limit as n → ∞, E[v(k) − 1−F(v(k))
f (v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) → v 938

for all k since in the limit as n → ∞, v(k) → v and 1−F(v(k))
f (v(k))

→ 0 with probability 939

arbitrarily close to 1 for all k. Thus, in the limit as n → ∞, the expected revenue from 940
the mechanism under targeting approaches

∑s
k=1 ckv. By contrast, under bundling, all 941

bidders bid w ≡ ∫ v

0 1 − F(v) dv < v, and the total expected revenue under bundling is 942∑s
k=1 ckw <

∑s
k=1 ckv. From this, it follows that for sufficiently large values of n, the 943

expected revenue from targeting exceeds the expected revenue from bundling for all 944
values of ck. 945

Also, note that E[v(k) − 1−F(v(k))
f (v(k))

∣∣v(k) ≥ r]Pr(v(k) ≥ r) is increasing in n for all k since the 946

distribution of the kth-highest of n+ 1 draws from the cumulative distribution function 947
F, first order stochastically dominates the distribution of the kth-highest of n draws 948
from the cumulative distribution function F, and the kth-highest virtual valuation 949

v(k) − 1−F(v(k))
f (v(k))

is strictly increasing in the kth-highest value v(k). From this, it follows that 950

the expected revenue from the mechanism under targeting is strictly increasing in n. 951
However, we have seen that the expected revenue from the mechanism under bundling 952
is

∑s
k=1 ckw, which is independent of n. Combining this with the results in the previous 953

paragraph shows that there is some n∗∗ such that targeting is preferred to bundling for 954
all values of ck if and only if n ≥ n∗∗. 955

Next, note that if n = 2, then bundling is strictly preferred to targeting. If n = 2, 956
then it must be the case that s = 1 and the position auction is equivalent to a standard 957
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second-price auction. However, we have already seen under the standard second-price958
auction that bundling is strictly preferred to targeting when n = 2. Thus, bundling is959
also preferred to targeting in position auctions when n = 2. We have also seen that the960
seller’s expected revenue from targeting is strictly increasing in n, while the seller’s961
expected revenue from bundling is independent of n. Combining these facts shows that962
there is some n∗ ≥ 2 such that bundling is preferred to targeting for all values of ck if963
and only if n ≤ n∗.964

Finally, consider values of n ∈ (n∗, n∗∗) for which it is neither the case that target-965
ing is preferred to bundling nor that bundling is preferred to targeting for all values966

of ck. The seller’s expected revenue under targeting is
∑s

k=1 ckE[v(k) − 1−F(v(k))
f (v(k))

|v(k) ≥967

r]Pr(v(k) ≥ r), whereas the seller’s expected revenue under bundling is
∑s

k=1 ckw,968

where w ≡ ∫ v

0 1 − F(v) dv < v. Thus, the difference between the seller’s ex-969
pected revenue under targeting and the seller’s expected revenue under bundling is970 ∑s

k=1 ck(E[v(k) − 1−F(v(k))
f (v(k))

|v(k) ≥ r]Pr(v(k) ≥ r) − w). E[v(k) − 1−F(v(k))
f (v(k))

|v(k) ≥ r]Pr(v(k) ≥ r),971

however, is decreasing in k since the distribution of the kth-highest of n draws from972
the cumulative distribution function F, first order stochastically dominates the dis-973
tribution of the k + 1th-highest of n draws from the cumulative distribution function974

F, and v − 1−F(v)
f (v) is strictly increasing in v. Thus, there is some k∗ ∈ [1, s) such that975

E[v(k) − 1−F(v(k))
f (v(k))

|v(k) ≥ r]Pr(v(k) ≥ r) > w if and only if k ≤ k∗.976

From this, it follows that the difference between the seller’s expected revenue977
under targeting and the seller’s expected revenue under bundling,

∑s
k=1 ck(E[v(k) −978

1−F(v(k))
f (v(k))

|v(k) ≥ r]Pr(v(k) ≥ r) − w), is strictly decreasing in ck for all k > k∗ and strictly979

increasing in ck for all k ≤ k∗. It then follows that, for values of n ∈ (n∗, n∗∗), there is980
some k∗ ∈ [1, s) such that targeting is preferred to bundling if and only if the values981
of ck for k ≤ k∗ are sufficiently large compared to the values of ck for k > k∗. Moreover,982

since E[v(k) − 1−F(v(k))
f (v(k))

|v(k) ≥ r]Pr(v(k) ≥ r) is increasing in n for all k, the relevant value983

of k∗ ∈ [1, s) for which E[v(k) − 1−F(v(k))
f (v(k))

|v(k) ≥ r]Pr(v(k) ≥ r) > w if and only if k ≤ k∗ is984

nondecreasing in n. Thus, the k∗ ∈ [1, s) for which targeting is preferred to bundling if985
and only if the values of ck for k ≤ k∗ are sufficiently large compared to the values of ck986
for k > k∗ is also nondecreasing in n.987

PROOF OF OBSERVATION 6.1. Under position auctions, the seller’s expected revenue988
from targeting equals the seller’s expected revenue under the VCG mechanism, which989
is

∑s
k=1 k(ck − ck+1)E[v(k+1)], where v(k) denotes the value of the bidder with the kth-990

highest value, and cs+1 ≡ 0. Now, when the bidders’ values are draw from the uniform991

distribution on [0, 1], it is necessarily the case that E[v(k+1)] = 1 − k+1
n+1 = n−k

n+1 ; thus,992

the seller’s revenue under targeting is
∑s

k=1
k(n−k)

n+1 (ck − ck+1). Also, since the bidders all993

make a bid of 1
2 under bundling, the seller’s revenue under bundling is 1

2

∑s
k=1 ck.994

Now, if n = 3, then s ≤ 2, and the seller’s revenue under targeting reduces to995
1
2 (c1 −c2)+ 1

2 c2 = 1
2 c1, while the seller’s revenue under bundling is 1

2 (c1 +c2). From this,996
it follows that if n = 3, then bundling dominates targeting. If n = 4, then s ≤ 3, and the997
seller’s revenue under targeting reduces to 3

5 (c1 −c2)+ 4
5 (c2 −c3)+ 3

5 c3 = 3
5 c1 + 1

5 (c2 −c3),998

but the seller’s revenue under bundling is 1
2 (c1 + c2 + c3). Thus, if c2 = c3 = 0, then the999

seller’s revenue under targeting is greater than the seller’s revenue under bundling,1000
but if c2 = c3 = c1, then the seller’s revenue under bundling is greater than the seller’s1001
revenue under targeting. Therefore, the key value of n∗ in Theorem 6.4 is n∗ = 3.1002
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Now, by Part (3) of Theorem 6.4, we know that if the seller’s revenue under targeting 1003
is greater than the seller’s revenue under bundling when c2 = · · · = cs = c1, then the 1004
seller’s revenue under targeting is greater than the seller’s revenue under bundling 1005
for all possible values of the click-through rates. Now, when c1 = c2 = · · · = cs, the 1006

seller’s revenue under targeting is
∑s

k=1
k(n−k)

n+1 (ck − ck+1) = s(n−s)
n+1 c1, and the seller’s 1007

revenue under bundling is s
2 c1. Thus, the seller’s revenue under targeting is greater 1008

than the seller’s revenue under bundling if and only if n−s
n+1 ≥ 1

2 , which holds if and 1009

only if n ≥ 2s + 1. From this, it follows that the seller’s revenue under targeting is only 1010
guaranteed to be greater than the seller’s revenue under bundling if n ≥ 2s + 1. 1011

By combining the results in the previous two paragraphs, it follows that, under the 1012
conditions of the theorem, the critical values n∗ and n∗∗ in Theorem 6.4 are n∗ = 3 and 1013
n∗∗ = 2s + 1, respectively. 1014

PROOF OF THEOREM 7.1. We first show that if at least two bidders are unable to target, 1015
then the seller’s expected revenue will be monotonic in the number of bidders that can 1016
target. To see this, let w denote the common bid that is made by the bidders that are 1017
unable to target, and let v(2) denote the second-highest bid of the bidders that are able 1018
to target. If at least two bidders are unable to target, then the seller’s revenue will be 1019
max{v(2), w}. But if G(v(2)|m) denotes the distribution of v(2) conditional on the number 1020
of bidders who can target m, then G(v(2)|m + 1) first order stochastically dominates 1021
G(v(2)|m) for all m. Thus, E[max{v(2), w}] is increasing in m, and if at least two bidders 1022
are unable to target, the seller’s expected revenue will be monotonic in the number of 1023
bidders that can target. 1024

Now, we show a seller’s expected revenue need not be monotonic in the number of 1025
bidders that can target in general. To see this, suppose that there are n = 4 bidders and 1026
each bidder’s value is drawn from the lognormal distribution with parameters μ < 0 1027
and σ 2 = −2μ. Note that if no bidders can target, then each bidder has an expected 1028

value of eμ+σ 2/2 = 1, each bidder bids this amount, and the seller’s revenue is 1. If 1029
exactly one bidder can target, then three of the bidders only know that they have an 1030
expected value equal to 1, these three bidders all bid this amount, and the seller’s 1031
revenue is again 1. 1032

If exactly two bidders are able to target, then the two bidders that are not able to 1033
target both only know that they have an expected value equal to 1, these two bidders 1034
both bid this amount, and the seller’s revenue is always at least 1. At the same time, 1035
there is a strictly positive probability that both sellers that are able to target will learn 1036
that their values are greater than 1, these sellers will both bid more than 1, and the 1037
seller’s revenue will be greater than 1. Thus, if exactly two bidders are able to target, 1038
then the seller’s expected revenue in the auction is strictly greater than 1. 1039

Now, consider what happens when exactly three bidders can target in the limit as 1040
μ → −∞ and σ 2 = −2μ. Note that if exactly one of the three bidders who can target 1041
learns that one’s value is greater than 1 and the other bidders who can target learn that 1042
their values are less than or equal to 1, then the seller’s revenue will be exactly the same 1043
as it would be if no bidders were able to target. Thus, whether it is beneficial for the 1044
seller to allow targeting depends on the relative costs and benefits from circumstances 1045
in which all three bidders who are able to target learn that their values are less than 1046
1 with the circumstances under which at least two bidders learn that their values are 1047
greater than or equal to 1. 1048

Note that the probability that a given bidder has a value less than c for any c > 0 goes 1049
to one in the limit as μ → −∞ when σ 2 = −2μ. From this, it follows that, conditional 1050
on a buyer having a value less than 1, the expectation of the buyer’s value goes to zero 1051
in the limit as μ → −∞ when σ 2 = −2μ. Similarly, if p(μ) denotes the probability that 1052
a buyer has a value greater than 1 for a given μ < 0 when σ 2 = −2μ, it follows that 1053
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limμ→−∞ p(μ) = 0. Thus, when exactly three bidders are able to target, in the limit as1054

μ → −∞ and σ 2 = −2μ, the probability that all three bidders who are able to target1055
learn that their values are less than or equal 1 goes to 1 and, conditional on this event1056
taking place, the expectation of the highest of these three bidders’ values goes to 0.1057

Now, a bidder’s expected value is (1− p(μ))E[v|v ≤ 1]+ p(μ)E[v|v > 1]. We know that1058
in the limit as μ → −∞ when σ 2 = −2μ, we have that p(μ) → 0 and E[v|v ≤ 1] → 0.1059
Thus, since each bidder has an expected value of 1, it follows that in the limit as1060
μ → −∞ when σ 2 = −2μ, we must have that p(μ)E[v|v > 1] → 1, meaning that1061
E[v|v > 1] = �( 1

p(μ) ). However, the probability that at least two of the bidders who are1062

allowed to target learn that their values are greater than or equal to 1 is O(p(μ)2) in1063
the limit as μ → −∞. The expectation of the second highest of these bidders’ values1064
given that at least two of these bidders have values greater than 1 is no greater than1065
E[v|v > 1] = �( 1

p(μ) ). From this, it follows that the total expected benefit to allowing1066

exactly three bidders to target from the circumstances in which at least two bidders1067
learn that their values are greater than or equal to 1 is O(p(μ)2 1

p(μ) ) = O(p(μ)), which1068

goes to zero in the limit as μ → −∞ when σ 2 = −2μ.1069
We have seen, however, that the total expected costs to the seller from allowing1070

exactly three bidders to target that result from the circumstances in which all three1071
bidders who are able to target learn that their values are less than 1 is roughly 1 unit1072
of revenue in expectation in the limit, as μ → −∞ when σ 2 = −2μ. It thus follows that,1073
for sufficiently negative values of μ and σ 2 = −2μ, a seller’s expected revenue from1074
allowing exactly three bidders to target is lower than the seller’s expected revenue from1075
not allowing any bidders to target. From this, it follows that a seller’s expected revenue1076
from targeting need not be monotonic in the number of bidders that can target.1077

PROOF OF THEOREM 7.2. If the bidder with the highest expected value is the only1078
bidder that can target and this bidder learns that its value exceeds the second-highest1079
expected value, then the seller’s revenue is unaffected by targeting. But if this bidder1080
learns that its value is lower than the second-highest expected value, then allowing1081
targeting decreases the seller’s revenue. Thus the seller prefers bundling to targeting1082
if the bidder with the highest expected value is the only bidder that can target.1083

Similarly, if a bidder with the kth-highest expected value for some k ≥ 3 is the only1084
bidder that can target and this bidder learns that its value is less than or equal to the1085
second-highest expected value, then the seller’s revenue is unaffected by targeting. But1086
if a bidder with the kth-highest expected value for some k ≥ 3 learns that its value is1087
greater than the second-highest expected value, then targeting increases the seller’s1088
revenue. Thus, the seller prefers targeting to bundling if a bidder with the kth-highest1089
expected value for some k ≥ 3 is the only bidder that can target.1090

Finally, if a bidder with the second-highest expected value is the only bidder that1091
can target, then the second-highest bid is the value of the bidder with the second-1092
highest expected value (if this value is between the highest expected value and the1093
third-highest expected value), the highest expected value (if this value is less than1094
the value of the bidder with the second-highest expected value), or the third-highest1095
expected value (if this value is greater than the value of the bidder with the second-1096
highest expected value). Thus, the seller’s expected revenue is

∫ w(3)
0 w(3) f2(v) dv +1097 ∫ w(1)

w(3)
v f2(v) dv + ∫ ∞

w(1)
w(1) f2(v) dv, where w(1) denotes the highest expected value and1098

w(3) denotes the third-highest expected value. This expression is increasing in both1099
w(1) and w(3). Furthermore, in the limit as w(3) → w(2), where w(2) denotes the second-1100
highest expected value, and w(1) → ∞,

∫ w(3)
0 w(3) f2(v) dv+∫ w(1)

w(3)
v f2(v) dv+∫ ∞

w(1)
w(1) f2(v) dv1101

approaches
∫ w(2)

0 w(2) f2(v) dv + ∫ ∞
w(2)

v f2(v) dv >
∫ ∞

0 v f2(v) dv = w(2). In the limit as1102
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w(3) → 0 and w(1) → w(2),
∫ w(3)

0 w(3) f2(v) dv + ∫ w(1)
w(3)

v f2(v) dv + ∫ ∞
w(1)

w(1) f2(v) dv approaches 1103∫ w(2)
0 v f2(v) dv + ∫ ∞

w(2)
w(2) f2(v) dv <

∫ ∞
0 v f2(v) dv = w(2). Combining these results shows 1104

that if a bidder with the second-highest expected value is the only bidder that can 1105
target, then the seller prefers targeting to bundling if and only if the values of the 1106
highest and third-highest expected bids are sufficiently high. 1107

PROOF OF THEOREM 7.3. If bidders follow an equilibrium of a position auction that 1108
results in the same payoffs as the VCG mechanism, then the seller’s total revenue from 1109
the auction is

∑s
k=1 k(ck − ck+1)v(k+1), where v(k) denotes the value of the bidder with the 1110

kth-highest value and cs+1 ≡ 0. From this, it follows that if the bidder with the highest 1111
expected value is the only bidder that can target and this bidder learns that it has 1112
a value that is still greater than or equal to the second-highest expected value, then 1113
the value of

∑s
k=1 k(ck − ck+1)v(k+1) is the same regardless of whether the seller allows 1114

targeting, and the seller’s revenue is unaffected by targeting. But if the bidder with the 1115
highest expected value learns that it has a value that is less than the second-highest 1116
expected value, then the value of

∑s
k=1 k(ck − ck+1)v(k+1) is lower under targeting than it 1117

would be under bundling, and allowing targeting decreases the seller’s revenue. Thus, 1118
the seller strictly prefers bundling to targeting if the bidder with the highest expected 1119
value is the only bidder that can target. 1120

Similarly, if a bidder with the kth-highest expected value for some k ≥ s+2 is the only 1121
bidder that can target, and this bidder learns that it has a value that is still less than 1122
or equal to the s + 1th-highest expected value, then the value of

∑s
k=1 k(ck − ck+1)v(k+1) 1123

is the same regardless of whether the seller allows targeting, and the seller’s revenue 1124
is unaffected by targeting. But if a bidder with the kth-highest expected value for some 1125
k ≥ s + 2 instead learns that it has a value that is greater than the s + 1th-highest 1126
expected value, then the value of

∑s
k=1 k(ck − ck+1)v(k+1) is greater under targeting than 1127

it would be under bundling, and allowing targeting increases the seller’s revenue. Thus, 1128
the seller strictly prefers targeting to bundling if a bidder with the kth-highest expected 1129
value for some k ≥ s + 2 is the only bidder that can target. 1130

Finally, if a bidder with the kth-highest expected value for some k ∈ [2, s + 1] is the 1131
only bidder that can target, there is no general result as to whether the seller prefers 1132
targeting to bundling. If c j = c j+1 for all j ≤ k, but c j > c j+1 for all other values of j, 1133
then the seller strictly prefers bundling to targeting by the same reasoning in the first 1134
paragraph of this proof. If k ≥ 3 and c j = c j+1 for all j ≥ k − 1, but c j > c j+1 for all 1135
other values of j, then the seller strictly prefers targeting to bundling by the reasoning 1136
in the previous paragraph. If k = 2 and c j = c j+1 for all j ≥ 2, but c1 > c2, then we 1137
know from Theorem 7.2 that there is no general result as to whether the seller prefers 1138
targeting to bundling. Thus, if k ∈ [2, s + 1], there is no general result as to whether 1139
the seller prefers targeting to bundling. 1140
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