
Handout #3: Peak Load Pricing 
 
Consider a firm that experiences two kinds of costs – a capacity cost and a marginal cost.  How 
should capacity be priced?  This issue is applicable to a wide variety of industries, including 
pipelines, airlines, telephone networks, construction, electricity, highways, and the internet.   
 
The basic peak-load pricing problem, pioneered by Marcel Boiteaux, considers two periods.  The 
firm’s profits are given by 
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Prices equal to marginal costs are not sustainable, because a firm selling with price equal to 
marginal cost would not earn a return on the capacity, and thus would lose money and go out of 
business.   A capacity charge is necessary.  The question of peak load pricing is where the 
capacity charge should be allocated. 
 
Demands are ordinarily assumed independent, but this is neither a good assumption nor a 
necessary one.  Our previous analysis suggests how the solution will change, however, and so I 
will stick with independent demands for simplicity. 
 
Social welfare is 
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The Ramsey problem is to maximize W subject to a profit condition.  As always, write the 
Lagrangian 
 
 L = W + l p. 
 
Therefore,  
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Or, 
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where 

21
1 qq ≥ is the characteristic function of the event q1≥q2. 

 
Similarly, 
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Note as before that lÆ• yields the monopoly solution. 
 
There are two potential types of solution.  Let the demand for good 1 exceed the demand for 
good 2.  Either q1>q2, or the two are equal. 
 
Case 1: q1>q2. 
 

11

11 1
1

)(

ε+λ
λ

=
−β−

p

mcqp
 and 

22

22 1
1

)(

ε+λ
λ

=
−

p

mcqp
. 

 
In case 1, with all of the capacity charge allocated to good 1, quantity for good 1 still exceeds 
quantity for good 2.  Thus, the peak period for good 1 is an extreme peak.  In contrast, case 2 
arises when assigning the capacity charge to good 1 would reverse the peak – assigning all of the 
capacity charge to good 1 would make period 2 the peak. 
 
Case 2: q1=q2. 
 
The first order conditions become inequalities, of the form  
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These must solve at q1= q0=q.  The profit equation can be written 
 
p1(q) - mc + p2(q) – mc = b 
 
This equation shows that the capacity charge is shared across the two markets proportional to the 
inverse demand. 
 
Priority Pricing 
 
The peak load problem is essentially a cost allocation problem.  It has an efficiency aspect, in 
that pricing matters to relative demand, but that efficiency aspect is incorporated in a familiar 
way, using inverse elasticities.  The priority pricing problem introduced by Robert Wilson has a 
superficial similarity to the peak load problem – when capacity is reached, who should be 
rationed?  Implicitly, the peak load formulation implies a spot market, so that each market is 
rationed efficiently.  In many circumstances, it is not possible to use prices ex post to ration the 
market.  For example, absent smart appliances, it is difficult for homeowners to adjust electric 
demand in real time as prices vary – homeowners aren’t even informed about the abrupt price 
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changes.  Priority pricing is a means of contracting in advance when capacity, or demand, is 
stochastic. 
 
At this time, the problem of stochastic demand and priority pricing has not been adequately 
addressed.  In particular, with stochastic demand, there is an issue of whether all customers are 
able to participate in the ex ante priority market. 
 
Consider a case of a continuum of consumers, each of whom desires one unit.  As will become 
clear, it doesn’t matter if some consumers desire multiple units – each unit can be treated as 
demanded by a separate consumer.  Rank the consumers by their valuations for the good, so that 
the qth consumer has a value p(q) for the good, and p is downward sloping. 
 
The quantity available is a random variable with distribution F.  Priority pricing is a charge 
schedule c which provides a unit to a customer paying c(q) whenever realized supply is q or 
greater. 
 
It is a straightforward exercise to calculate the incentive compatible c schedule.  A customer of 
type q should choose to pay c(q) for the qth spot in the priority list.  This leads to the incentive 
constraint: 
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The envelope theorem gives 
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It is a straightforward exercise to demonstrate that the first order condition is sufficient; see 
handout #2.  Let F(H)=1, so that u(H)=0.  Then 
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Revenues to the firm from the priority pricing are 
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This is the revenue associated with a competitive supply; a monopolist might have an incentive 
to withhold capacity to boost prices.  How does a monopolist do so?  Withholding of capacity 
has the property of changing the distribution of available supply, in a first order stochastic 
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dominant manner.  In particular, the monopolist can offer any distribution of capacity G, 
provided G≥F.  What is the monopolist’s solution?  Rewrite R to obtain 
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Provided marginal revenue MR is single-peaked,  
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That is, the monopolist cuts off the capacity at the monopoly supply. 
 
Matching Problems 
 
Priority pricing is a solution to a matching problem, matching the high value buyers with 
capacity.  Many other problems have this feature, that it is desirable to match high types with 
high types and low types with low types.  Such models have been used as models of marriage, 
employment, university admissions, incentive contracts, and other categories.  Wilson examines 
not just the continuum matching, in which each probability of service interruption is separately 
priced, but also finite groups.  Rather than offer a continuum of categories, consider offering just 
two – high priority service and low priority service.  How well does such a priority service do? 
 
The answer is remarkably well.  Consider first the linear demand case with a uniform distribution 
of outages.  Perfect matching gets a payoff 
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No matching – that is a random assignment – produces an expected value of ¼, a fact which is 
evident from 
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Now consider two groups of equal size.  The high value group has an average value of ¾, and is 

served with probability =+∫ ∫ dqqdq
2/1

0

1

2/1

12 ¾.   The low value group has average value ¼ and is 

served with probability 1/4.  Thus, the expected value from two categories is 
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captures 75% of net value of a continuum of types! 
 
The linear/uniform distribution is special; however, I show elsewhere that, provided a common 
hazard rate assumption is satisfied, two groups of distinguished by being above or below the 
mean generally captures 50% or more of the possible gains over no priority pricing.  That is, 
even two classes is sufficient to capture a majority of the gains arising from priority pricing.  
Wilson shows that the losses from finite classes are on the order of 1/n2. 


